Sur la propagation des singularités dans les variétés CR
Bulletin de la Société Mathématique de France (1990)
- Volume: 118, Issue: 4, page 403-450
- ISSN: 0037-9484
Access Full Article
topHow to cite
topTrepreau, J.-M.. "Sur la propagation des singularités dans les variétés CR." Bulletin de la Société Mathématique de France 118.4 (1990): 403-450. <http://eudml.org/doc/87612>.
@article{Trepreau1990,
author = {Trepreau, J.-M.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {propagation of hypoanalytic singularities; CR-functions},
language = {fre},
number = {4},
pages = {403-450},
publisher = {Société mathématique de France},
title = {Sur la propagation des singularités dans les variétés CR},
url = {http://eudml.org/doc/87612},
volume = {118},
year = {1990},
}
TY - JOUR
AU - Trepreau, J.-M.
TI - Sur la propagation des singularités dans les variétés CR
JO - Bulletin de la Société Mathématique de France
PY - 1990
PB - Société mathématique de France
VL - 118
IS - 4
SP - 403
EP - 450
LA - fre
KW - propagation of hypoanalytic singularities; CR-functions
UR - http://eudml.org/doc/87612
ER -
References
top- [1] AIRAPETYAN (R.A.). — Extension of CR-functions from Piecewise-Smooth. CR-Manifolds., Math. USSR-Sb., t. 134, 176 (trad. 62, 1989, n° 1), 1987, p. 111-120. Zbl0663.32015
- [2] ANDREOTTI (A.) and HILL (C.D.). — E. E. Levi Convexity and the Hans Lewy Problem I, Ann. Scuola Norm. Sup. Pisa, t. 26, 1972, p. 325-363. Zbl0256.32007MR57 #718
- [3] BAOUENDI (M.S.), CHANG (C.H.) and TRÈVES (F.). — Microlocal Hypo-Analyticity and Extension of CR-Functions, J. Differential Geom., t. 18, 1983, p. 331-391. Zbl0575.32019MR85h:32030
- [4] BAOUENDI (M.S.), ROTHSCHILD (L.P.) and TRÈVES (F.). — CR Structures with group action and extendability of CR functions, Invent. Math., t. 82, 1985, p. 359-396. Zbl0598.32019MR87i:32028
- [5] BAOUENDI (M.S.) and ROTHSCHILD (L.P.). — Normal Forms for Generic Manifolds and Holomorphic Extension of CR Functions, J. Differential Geom., t. 25, 1987, p. 431-467. Zbl0629.32016MR88m:32039
- [6] BAOUENDI (M.S.) and ROTHSCHILD (L.P.). — Cauchy-Riemann Functions on Manifolds of Higher Codimension in Complex Space Preprint, 1989. Zbl0712.32009
- [7] BAOUENDI (M.S.) and TRÈVES (F.). — A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math., t. 113, 1981, p. 387-421. Zbl0491.35036MR82f:35057
- [8] BOGGESS (A.) and POLKING (J.C.). — Holomorphic Extension of CR Functions, Duke Math. J., t. 49, 1982, p. 757-784. Zbl0506.32003MR84j:32018
- [9] BONY (J.-M.). — Principe du maximum, inégalité de Harnack, Ann. Inst. Fourier, t. 19, 1989, p. 277-304. Zbl0176.09703MR41 #7486
- [9'] BONY (J.-M.). — Propagation des singularités différentiables pour une classe d'opérateurs différentiels à coefficients analytiques, Astérisque, t. 34-35, 1976, p. 43-91. Zbl0344.35075
- [10] COUPET (B.). — Régularité d'applications holomorphes sur des variétés totalement réelles, Thèse, Université de Provence, 1987.
- [11] HANGES (N.) and SJÖSTRAND (J.). — Propagation of analyticity for a class of non-micro-characteristic operators, Ann. of Math., t. 116, 1982, p. 559-577. Zbl0537.35007
- [12] HANGES (N.) and TRÈVES (F.). — Propagation of holomorphic extendability of CR functions, Math. Ann., t. 263, 1983, p. 157-177. Zbl0494.32004MR85c:58102
- [13] HILL (C.D.) and TAIANI (G.). — Families of Analytic Discs with Boundaries in a Prescribed CR Submanifold, Ann. Scuola Norm. Sup. Pisa, t. 4-5, 1978, p. 327-380. Zbl0399.32008
- [14] KASHIWARA (M.) and SCHAPIRA (P.). — Microlocal Study of Sheaves, Astérisque, t. 128, 1985. Zbl0589.32019MR87f:58159
- [15] SATO (M.), KAWAÏ (T.) and KASHIWARA (M.). — Hyperfunctions and Pseudo-Differential Equations, Lecture Notes in Math., t. 287, 1973, p. 265-529. Zbl0277.46039MR54 #8747
- [16] SJÖSTRAND (J.). — Singularités analytiques microlocales, Astérisque, t. 95, 1982. Zbl0524.35007MR84m:58151
- [17] SJÖSTRAND (J.). — The FBI-Transform for CR Submanifolds of Cn, Prépublications Mathématiques d'Orsay, Université Paris-Sud, Bât. 425, 91405 Orsay, 1982.
- [18] STENSONES (B.). — Extendability of holomorphic functions, Lecture Notes, n° 1268, (Ed. Krantz), Complex Analysis, 1987. Zbl0622.32013MR89d:32032
- [19] SUSSMANN (H.J.). — Orbits of Families of Vector Fields and Integrability of Distributions, Trans. Amer. Math. Soc., t. 180, 1973, p. 171-187. Zbl0274.58002MR47 #9666
- [20] TREPREAU (J.M.). — Sur l'hypoellipticité analytique microlocale des opérateurs de type principal, Comm. Partial Differential Equations, t. 9 (11), 1984, p. 1119-1146. Zbl0566.35027MR86m:58144
- [21] TREPREAU (J.-M.). — Sur le prolongement holomorphe des fonctions CR définies sur une hypersurface réelle de classe C2 dans Cn, Invent. Math., t. 83, 1986, p. 583-592. Zbl0586.32016MR87f:32035
- [22] TREVES (F.). — Approximation and Representation of Functions and Distributions Annihilated by a System of Complex Vector Fields, Ecole Polytechnique, Centre de Mathématiques, Palaiseau, 1981. Zbl0515.58030MR84k:58008
- [23] TUMANOV (A.E.). — Extension of CR Functions into a Wedge from a Manifold of Finite Type, Math. USSR-Sb, t. 64, 1989, p. 129-140. Zbl0692.58005MR89m:32027
Citations in EuDML Documents
top- J.-M. Trepreau, Propagation dans les variétés
- Joël Merker, Egmont Porten, On the local meromorphic extension of CR meromorphic mappings
- Laura De Carli, Mauro Nacinovich, Unique continuation in abstract pseudoconcave manifolds
- Christine Laurent-Thiébaut, Egmon Porten, Analytic extension from non-pseudoconvex boundaries and -convexity
- Andrea Altomani, C. Denson Hill, Mauro Nacinovich, Egmont Porten, Holomorphic extension from weakly pseudoconcave CR manifolds
- Frédéric Sarkis, Problème de Plateau complexe dans les variétés kählériennes
- Joël Merker, On envelopes of holomorphy of domains covered by Levi-flat hats and the reflection principle
- Joël Merker, Étude de la régularité analytique de l'application de réflexion CR formelle
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.