Sur la propagation des singularités dans les variétés CR

J.-M. Trepreau

Bulletin de la Société Mathématique de France (1990)

  • Volume: 118, Issue: 4, page 403-450
  • ISSN: 0037-9484

How to cite

top

Trepreau, J.-M.. "Sur la propagation des singularités dans les variétés CR." Bulletin de la Société Mathématique de France 118.4 (1990): 403-450. <http://eudml.org/doc/87612>.

@article{Trepreau1990,
author = {Trepreau, J.-M.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {propagation of hypoanalytic singularities; CR-functions},
language = {fre},
number = {4},
pages = {403-450},
publisher = {Société mathématique de France},
title = {Sur la propagation des singularités dans les variétés CR},
url = {http://eudml.org/doc/87612},
volume = {118},
year = {1990},
}

TY - JOUR
AU - Trepreau, J.-M.
TI - Sur la propagation des singularités dans les variétés CR
JO - Bulletin de la Société Mathématique de France
PY - 1990
PB - Société mathématique de France
VL - 118
IS - 4
SP - 403
EP - 450
LA - fre
KW - propagation of hypoanalytic singularities; CR-functions
UR - http://eudml.org/doc/87612
ER -

References

top
  1. [1] AIRAPETYAN (R.A.). — Extension of CR-functions from Piecewise-Smooth. CR-Manifolds., Math. USSR-Sb., t. 134, 176 (trad. 62, 1989, n° 1), 1987, p. 111-120. Zbl0663.32015
  2. [2] ANDREOTTI (A.) and HILL (C.D.). — E. E. Levi Convexity and the Hans Lewy Problem I, Ann. Scuola Norm. Sup. Pisa, t. 26, 1972, p. 325-363. Zbl0256.32007MR57 #718
  3. [3] BAOUENDI (M.S.), CHANG (C.H.) and TRÈVES (F.). — Microlocal Hypo-Analyticity and Extension of CR-Functions, J. Differential Geom., t. 18, 1983, p. 331-391. Zbl0575.32019MR85h:32030
  4. [4] BAOUENDI (M.S.), ROTHSCHILD (L.P.) and TRÈVES (F.). — CR Structures with group action and extendability of CR functions, Invent. Math., t. 82, 1985, p. 359-396. Zbl0598.32019MR87i:32028
  5. [5] BAOUENDI (M.S.) and ROTHSCHILD (L.P.). — Normal Forms for Generic Manifolds and Holomorphic Extension of CR Functions, J. Differential Geom., t. 25, 1987, p. 431-467. Zbl0629.32016MR88m:32039
  6. [6] BAOUENDI (M.S.) and ROTHSCHILD (L.P.). — Cauchy-Riemann Functions on Manifolds of Higher Codimension in Complex Space Preprint, 1989. Zbl0712.32009
  7. [7] BAOUENDI (M.S.) and TRÈVES (F.). — A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math., t. 113, 1981, p. 387-421. Zbl0491.35036MR82f:35057
  8. [8] BOGGESS (A.) and POLKING (J.C.). — Holomorphic Extension of CR Functions, Duke Math. J., t. 49, 1982, p. 757-784. Zbl0506.32003MR84j:32018
  9. [9] BONY (J.-M.). — Principe du maximum, inégalité de Harnack, Ann. Inst. Fourier, t. 19, 1989, p. 277-304. Zbl0176.09703MR41 #7486
  10. [9'] BONY (J.-M.). — Propagation des singularités différentiables pour une classe d'opérateurs différentiels à coefficients analytiques, Astérisque, t. 34-35, 1976, p. 43-91. Zbl0344.35075
  11. [10] COUPET (B.). — Régularité d'applications holomorphes sur des variétés totalement réelles, Thèse, Université de Provence, 1987. 
  12. [11] HANGES (N.) and SJÖSTRAND (J.). — Propagation of analyticity for a class of non-micro-characteristic operators, Ann. of Math., t. 116, 1982, p. 559-577. Zbl0537.35007
  13. [12] HANGES (N.) and TRÈVES (F.). — Propagation of holomorphic extendability of CR functions, Math. Ann., t. 263, 1983, p. 157-177. Zbl0494.32004MR85c:58102
  14. [13] HILL (C.D.) and TAIANI (G.). — Families of Analytic Discs with Boundaries in a Prescribed CR Submanifold, Ann. Scuola Norm. Sup. Pisa, t. 4-5, 1978, p. 327-380. Zbl0399.32008
  15. [14] KASHIWARA (M.) and SCHAPIRA (P.). — Microlocal Study of Sheaves, Astérisque, t. 128, 1985. Zbl0589.32019MR87f:58159
  16. [15] SATO (M.), KAWAÏ (T.) and KASHIWARA (M.). — Hyperfunctions and Pseudo-Differential Equations, Lecture Notes in Math., t. 287, 1973, p. 265-529. Zbl0277.46039MR54 #8747
  17. [16] SJÖSTRAND (J.). — Singularités analytiques microlocales, Astérisque, t. 95, 1982. Zbl0524.35007MR84m:58151
  18. [17] SJÖSTRAND (J.). — The FBI-Transform for CR Submanifolds of Cn, Prépublications Mathématiques d'Orsay, Université Paris-Sud, Bât. 425, 91405 Orsay, 1982. 
  19. [18] STENSONES (B.). — Extendability of holomorphic functions, Lecture Notes, n° 1268, (Ed. Krantz), Complex Analysis, 1987. Zbl0622.32013MR89d:32032
  20. [19] SUSSMANN (H.J.). — Orbits of Families of Vector Fields and Integrability of Distributions, Trans. Amer. Math. Soc., t. 180, 1973, p. 171-187. Zbl0274.58002MR47 #9666
  21. [20] TREPREAU (J.M.). — Sur l'hypoellipticité analytique microlocale des opérateurs de type principal, Comm. Partial Differential Equations, t. 9 (11), 1984, p. 1119-1146. Zbl0566.35027MR86m:58144
  22. [21] TREPREAU (J.-M.). — Sur le prolongement holomorphe des fonctions CR définies sur une hypersurface réelle de classe C2 dans Cn, Invent. Math., t. 83, 1986, p. 583-592. Zbl0586.32016MR87f:32035
  23. [22] TREVES (F.). — Approximation and Representation of Functions and Distributions Annihilated by a System of Complex Vector Fields, Ecole Polytechnique, Centre de Mathématiques, Palaiseau, 1981. Zbl0515.58030MR84k:58008
  24. [23] TUMANOV (A.E.). — Extension of CR Functions into a Wedge from a Manifold of Finite Type, Math. USSR-Sb, t. 64, 1989, p. 129-140. Zbl0692.58005MR89m:32027

Citations in EuDML Documents

top
  1. J.-M. Trepreau, Propagation dans les variétés C R
  2. Joël Merker, Egmont Porten, On the local meromorphic extension of CR meromorphic mappings
  3. Laura De Carli, Mauro Nacinovich, Unique continuation in abstract pseudoconcave C R manifolds
  4. Christine Laurent-Thiébaut, Egmon Porten, Analytic extension from non-pseudoconvex boundaries and A ( D ) -convexity
  5. Andrea Altomani, C. Denson Hill, Mauro Nacinovich, Egmont Porten, Holomorphic extension from weakly pseudoconcave CR manifolds
  6. Frédéric Sarkis, Problème de Plateau complexe dans les variétés kählériennes
  7. Joël Merker, On envelopes of holomorphy of domains covered by Levi-flat hats and the reflection principle
  8. Joël Merker, Étude de la régularité analytique de l'application de réflexion CR formelle

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.