Equivariant holomorphic extensions of real analytic manifolds
Bulletin de la Société Mathématique de France (1993)
- Volume: 121, Issue: 3, page 445-463
- ISSN: 0037-9484
Access Full Article
topHow to cite
topHeinzner, Peter. "Equivariant holomorphic extensions of real analytic manifolds." Bulletin de la Société Mathématique de France 121.3 (1993): 445-463. <http://eudml.org/doc/87673>.
@article{Heinzner1993,
author = {Heinzner, Peter},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Lie group; analytic action; complexification},
language = {eng},
number = {3},
pages = {445-463},
publisher = {Société mathématique de France},
title = {Equivariant holomorphic extensions of real analytic manifolds},
url = {http://eudml.org/doc/87673},
volume = {121},
year = {1993},
}
TY - JOUR
AU - Heinzner, Peter
TI - Equivariant holomorphic extensions of real analytic manifolds
JO - Bulletin de la Société Mathématique de France
PY - 1993
PB - Société mathématique de France
VL - 121
IS - 3
SP - 445
EP - 463
LA - eng
KW - Lie group; analytic action; complexification
UR - http://eudml.org/doc/87673
ER -
References
top- [A] ABELS (H.). — Parallelizability of proper actions, global K-slices and maximal compact subgroups, Math. Ann., t. 212, 1974, p. 1-19. Zbl0276.57019MR51 #11460
- [Ak] AKHIEZER (D.). — Equivariant complex extensions of homogeneous spaces, Math. Zametcei, t. 51, 1992, p. 3-9. Zbl0807.32023MR93i:32040
- [G] GRAUERT (H.). — On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math., t. 68, 2, 1958, p. 460-472. Zbl0108.07804MR20 #5299
- [H,W] HARVEY (R.F.) and WELLS (R.O). — Holomorphic approximation and hyperfunctions theory on a C1 totally real submanifold of a complex manifold, Math. Ann., t. 197, 1972, p. 287-318. Zbl0246.32019MR46 #9379
- [H1] HEINZNER (P.). — Linear äquivariante Einbettungen Steinscher Räume, Math. Ann., t. 280, 1988, p. 147-160. Zbl0617.32022MR89k:32061
- [H2] HEINZNER (P.). — Geometric invariant theory on Stein spaces, Math. Ann., t. 289, 1991, p. 631-662. Zbl0728.32010MR92j:32116
- [Ho] HOCHSCHILD (G.). — The Structure of Lie groups. — San Francisco London Amsterdam : Holden-Day, 1965. Zbl0131.02702MR34 #7696
- [M,M] MATSUSHIMA (Y.) et MORIMOTO (A.). — Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France, t. 88, 1960, p. 137-155. Zbl0094.28104MR23 #A1061
- [P] PALAIS (R.S.). — On the existence of slices for actions of non-compact Lie groups, Ann. of Math., t. 73, 2, 1961, p. 295-323. Zbl0103.01802MR23 #A3802
- [P,S] PROCESI (C.) and SCHWARZ (G.). — Inequalities defining orbit spaces, Invent. Math., t. 81, 1985, p. 539-554. Zbl0578.14010MR87h:20078
- [R] ROBERTS (M.). — A note on coherent G-sheaves, Math. Ann., t. 275, 1986, p. 573-582. Zbl0579.32013MR88b:58018a
- [Sch] SCHWARZ (G.W.). — Smooth functions invariant under the action of a compact Lie group, Topology, t. 14, 1975, p. 63-68. Zbl0297.57015MR51 #6870
- [S] SHUTRICK (H.B.). — Complex extensions, Quart. J. of Math. Series 2, t. 9, 1958, p. 189-201. Zbl0093.35401MR20 #5298
- [W,B] WHITNEY (H.) et BRUHAT (F.). — Quelques propriétés fondamentales des ensembles analytiques réels, Comment. Helv., t. 33, 1959, p. 132-160. Zbl0100.08101MR21 #889
Citations in EuDML Documents
top- Bernd Stratmann, Complexification of proper hamiltonian -spaces
- Christian Miebach, Henrik Stötzel, Spherical gradient manifolds
- Gregor Fels, Alan Huckleberry, Characterization of cycle domains via Kobayashi hyperbolicity
- Karl-Hermann Neeb, On the complex and convex geometry of Ol'shanskii semigroups
- Éric Leichtnam, François Golse, Matthew Stenzel, Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic riemannian manifolds
- Xiang-Yu Zhou, On invariant domains in certain complex homogeneous spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.