Equivariant holomorphic extensions of real analytic manifolds

Peter Heinzner

Bulletin de la Société Mathématique de France (1993)

  • Volume: 121, Issue: 3, page 445-463
  • ISSN: 0037-9484

How to cite

top

Heinzner, Peter. "Equivariant holomorphic extensions of real analytic manifolds." Bulletin de la Société Mathématique de France 121.3 (1993): 445-463. <http://eudml.org/doc/87673>.

@article{Heinzner1993,
author = {Heinzner, Peter},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Lie group; analytic action; complexification},
language = {eng},
number = {3},
pages = {445-463},
publisher = {Société mathématique de France},
title = {Equivariant holomorphic extensions of real analytic manifolds},
url = {http://eudml.org/doc/87673},
volume = {121},
year = {1993},
}

TY - JOUR
AU - Heinzner, Peter
TI - Equivariant holomorphic extensions of real analytic manifolds
JO - Bulletin de la Société Mathématique de France
PY - 1993
PB - Société mathématique de France
VL - 121
IS - 3
SP - 445
EP - 463
LA - eng
KW - Lie group; analytic action; complexification
UR - http://eudml.org/doc/87673
ER -

References

top
  1. [A] ABELS (H.). — Parallelizability of proper actions, global K-slices and maximal compact subgroups, Math. Ann., t. 212, 1974, p. 1-19. Zbl0276.57019MR51 #11460
  2. [Ak] AKHIEZER (D.). — Equivariant complex extensions of homogeneous spaces, Math. Zametcei, t. 51, 1992, p. 3-9. Zbl0807.32023MR93i:32040
  3. [G] GRAUERT (H.). — On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math., t. 68, 2, 1958, p. 460-472. Zbl0108.07804MR20 #5299
  4. [H,W] HARVEY (R.F.) and WELLS (R.O). — Holomorphic approximation and hyperfunctions theory on a C1 totally real submanifold of a complex manifold, Math. Ann., t. 197, 1972, p. 287-318. Zbl0246.32019MR46 #9379
  5. [H1] HEINZNER (P.). — Linear äquivariante Einbettungen Steinscher Räume, Math. Ann., t. 280, 1988, p. 147-160. Zbl0617.32022MR89k:32061
  6. [H2] HEINZNER (P.). — Geometric invariant theory on Stein spaces, Math. Ann., t. 289, 1991, p. 631-662. Zbl0728.32010MR92j:32116
  7. [Ho] HOCHSCHILD (G.). — The Structure of Lie groups. — San Francisco London Amsterdam : Holden-Day, 1965. Zbl0131.02702MR34 #7696
  8. [M,M] MATSUSHIMA (Y.) et MORIMOTO (A.). — Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France, t. 88, 1960, p. 137-155. Zbl0094.28104MR23 #A1061
  9. [P] PALAIS (R.S.). — On the existence of slices for actions of non-compact Lie groups, Ann. of Math., t. 73, 2, 1961, p. 295-323. Zbl0103.01802MR23 #A3802
  10. [P,S] PROCESI (C.) and SCHWARZ (G.). — Inequalities defining orbit spaces, Invent. Math., t. 81, 1985, p. 539-554. Zbl0578.14010MR87h:20078
  11. [R] ROBERTS (M.). — A note on coherent G-sheaves, Math. Ann., t. 275, 1986, p. 573-582. Zbl0579.32013MR88b:58018a
  12. [Sch] SCHWARZ (G.W.). — Smooth functions invariant under the action of a compact Lie group, Topology, t. 14, 1975, p. 63-68. Zbl0297.57015MR51 #6870
  13. [S] SHUTRICK (H.B.). — Complex extensions, Quart. J. of Math. Series 2, t. 9, 1958, p. 189-201. Zbl0093.35401MR20 #5298
  14. [W,B] WHITNEY (H.) et BRUHAT (F.). — Quelques propriétés fondamentales des ensembles analytiques réels, Comment. Helv., t. 33, 1959, p. 132-160. Zbl0100.08101MR21 #889

Citations in EuDML Documents

top
  1. Bernd Stratmann, Complexification of proper hamiltonian G -spaces
  2. Christian Miebach, Henrik Stötzel, Spherical gradient manifolds
  3. Gregor Fels, Alan Huckleberry, Characterization of cycle domains via Kobayashi hyperbolicity
  4. Karl-Hermann Neeb, On the complex and convex geometry of Ol'shanskii semigroups
  5. Éric Leichtnam, François Golse, Matthew Stenzel, Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic riemannian manifolds
  6. Xiang-Yu Zhou, On invariant domains in certain complex homogeneous spaces

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.