Remarques sur le revêtement universel des variétés kählériennes compactes

Fredéric Campana

Bulletin de la Société Mathématique de France (1994)

  • Volume: 122, Issue: 2, page 255-284
  • ISSN: 0037-9484

How to cite

top

Campana, Fredéric. "Remarques sur le revêtement universel des variétés kählériennes compactes." Bulletin de la Société Mathématique de France 122.2 (1994): 255-284. <http://eudml.org/doc/87690>.

@article{Campana1994,
author = {Campana, Fredéric},
journal = {Bulletin de la Société Mathématique de France},
keywords = {positivity of ; first fundamental group; compact Kähler manifold; universal cover},
language = {fre},
number = {2},
pages = {255-284},
publisher = {Société mathématique de France},
title = {Remarques sur le revêtement universel des variétés kählériennes compactes},
url = {http://eudml.org/doc/87690},
volume = {122},
year = {1994},
}

TY - JOUR
AU - Campana, Fredéric
TI - Remarques sur le revêtement universel des variétés kählériennes compactes
JO - Bulletin de la Société Mathématique de France
PY - 1994
PB - Société mathématique de France
VL - 122
IS - 2
SP - 255
EP - 284
LA - fre
KW - positivity of ; first fundamental group; compact Kähler manifold; universal cover
UR - http://eudml.org/doc/87690
ER -

References

top
  1. [A] ATIYAH (M.). — Elliptic operators, discrete groups and Von Neumann algebras, Soc. Math. France, Astérisque, t. 32-33, 1976, p. 43-72. Zbl0323.58015
  2. [B] BARLET (D.). — Espace analytique des cycles..., Lect. Notes Math., t. 482, 1975, p. 1-158. Zbl0331.32008MR53 #3347
  3. [B-P-V] BARTH (W.), PETERS (C.), VON DE VEN (A.). — Compact complex surfaces, Ergeb. Math. Grenzgeb., t. 4, 1984. Zbl0718.14023MR86c:32026
  4. [Bl] BLANCHARD (A.). — Sur les variétés analytiques complexes, Ann. Scient. École Nor. Sup., t. 73, 1958, p. 157-202. Zbl0073.37503MR19,316e
  5. [C1] CAMPANA (F.). — Coréduction algébrique d'un espace analytique faiblement kählérien compact, Invent. Math., t. 63, 1981, p. 187-223. Zbl0436.32024MR84e:32028
  6. [C2] CAMPANA (F.). — Twistor spaces of class C, J. Differential Geom., t. 33, 1991, p. 541-549. Zbl0694.32017MR92g:32059
  7. [C3] CAMPANA (F.). — Réduction d'Albanese d'un morphisme kählérien propre, I et II, Compositio Math., t. 54, 1985, p. 373-398 et 399-416. Zbl0609.32008MR87h:32058
  8. [C4] CAMPANA (F.). — Connexité rationnelle des variétés de Fano, Ann. Scient. École Nor. Sup., t. 25, 1992, p. 539-545. Zbl0783.14022MR93k:14050
  9. [C5] CAMPANA (F.). — Fundamental group and positivity properties of cotangent sheaves of compact Kähler manifolds, à paraître au J. Alg. Geometry. 
  10. [Ca] CATANESE (F.). — Moduli and classification of irregular Kähler manifolds..., Invent. Math., t. 104, 1991, p. 263-289. Zbl0743.32025MR92f:32049
  11. [F] FUJIKI (A.). — Semi-simple reductions of compact complex varieties, Pub. Institut Élie Cartan, t. 8, 1983, p. 79-133. Zbl0562.32014MR85m:32027
  12. [G.A]SÉMINAIRE de Géométrie Analytique. — Pub. Institut Élie Cartan, 5, 1982. 
  13. [G] GROMOV (M.). — Kähler hyperbolicity and L2-Hodge theory, J. Differential Geom., t. 33, 1991, p. 263-292. Zbl0719.53042MR92a:58133
  14. [Gu] GURJAR (R.V.). — Coverings of algebraic varieties in algebraic geometry, Sendai (1985), Adv. Stud. Pure Math. 10, T. Oda. éd., p. 179-183. Zbl0659.14011MR90e:14012
  15. [H] HIRZEBRUCH (F.). — Topological methods in algebraic geometry. — Springer Verlag, 1978. 
  16. [K] KAWAMATA (Y.). — Abundance theorem for minimal threefolds, Preprint Univ. Tokyo, 1991. 
  17. [Ko] KODAIRA (K.). — A theorem of completeness..., Ann. of Math., t. 75, 1962, p. 146-162. Zbl0112.38404MR24 #A3665b
  18. [Kol] KOLLAR (J.). — Shafavavitch maps and plurigenera of algebraic varieties, Preprint, 1992. 
  19. [Ko-Mi-Mo1] KOLLAR (J.), MIYAOKA (Y.), MORI (S.). — Rationally connected varieties, J. Alg. Geometry, 1, 1992, p. 429-448. Zbl0780.14026MR93i:14014
  20. [Ko-Mi-Mo2] KOLLAR (J.), MIYAOKA (Y.), MORI (S.). — Boundedness and rational connectedness of Fano manifolds, Preprint, 1991. 
  21. [L] LELONG (P.). — Intégration sur un ensemble analytique, Bull. Soc. Math. France, t. 85, 1957, p. 239-262. Zbl0079.30901MR20 #2465
  22. [Li] LIEBERMAN (D.). — Compactness of the Chow scheme, Lect. Notes Math., t. 670, 1977, p. 140-186. Zbl0391.32018MR80h:32056
  23. [Mi] MIYAOKA (Y.). — On the Kodaira dimension of minimal threefolds, Math. Ann., t. 281, 1988, p. 325-332. Zbl0625.14023MR89g:14028
  24. [Mi′] MIYAOKA (Y.). — Abundance conjecture for 3-folds. Case v = 1, Comp. Math., t. 68, 1988, p. 203-220. Zbl0681.14019MR89m:14023
  25. [Mo] MORI (S.). — Flip theorem and the existence of minimal models for 3-folds, J. Amer. Math. Soc., t. 1, 1988, p. 117-253. Zbl0649.14023MR89a:14048
  26. [N] NORI (M.V.). — Zariski's conjecture and related problems., Ann. Scient. École Nor. Sup., t. 16, 1983, p. 305-344. Zbl0527.14016MR86d:14027
  27. [Ra] RAN (Z.). — On subvarieties of Abelian varieties, Inv. Math., t. 62, 1981, p. 459-479. Zbl0474.14016MR82d:14024
  28. [R] REID (M.). — Bogomolov's theorem c21 ≤ 4c2. — Int. Symp. Alg. Geom. Kyoto, 1977. Zbl0478.14003
  29. [S] SHAFAVEVITCH (R.I.). — Basic Algebraic Geometry. — Springer-Verlag, 1977. 
  30. [U] UENO (K.). — Classification theory of algebraic varieties and compact complex spaces, Lect. Notes Math., t. 439. Zbl0299.14007MR58 #22062

Citations in EuDML Documents

top
  1. Frédéric Campana, Connexité abélienne des variétés kählériennes compactes
  2. Frédéric Campana, Orbifolds, special varieties and classification theory: an appendix
  3. Terrence Napier, Mohan Ramachandran, [unknown]
  4. Philippe Eyssidieux, Systèmes linéaires adjoints L 2
  5. Finnur Lárusson, Compact quotients of large domains in complex projective space
  6. Viatcheslav Kharlamov, Variétés de Fano réelles
  7. Olivier Debarre, Variétés de Fano
  8. Benoît Claudon, Andreas Höring, Compact Kähler manifolds with compactifiable universal cover
  9. Terrence Napier, Mohan Ramachandran, Generically strongly q -convex complex manifolds
  10. Jörg Winkelmann, Complex analytic geometry of complex parallelizable manifolds

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.