Unitary representations with non-zero cohomology
David A. Vogan; Gregg J. Zuckerman
Compositio Mathematica (1984)
- Volume: 53, Issue: 1, page 51-90
- ISSN: 0010-437X
Access Full Article
topHow to cite
topVogan, David A., and Zuckerman, Gregg J.. "Unitary representations with non-zero cohomology." Compositio Mathematica 53.1 (1984): 51-90. <http://eudml.org/doc/89677>.
@article{Vogan1984,
author = {Vogan, David A., Zuckerman, Gregg J.},
journal = {Compositio Mathematica},
keywords = {automorphic forms; cohomology of locally symmetric spaces; infinite- dimensional representations; semisimple group; reductive Lie group; Lie algebra; unitary irreducible representations; Harish-Chandra modules; vanishing theorem for cohomology},
language = {eng},
number = {1},
pages = {51-90},
publisher = {Martinus Nijhoff Publishers},
title = {Unitary representations with non-zero cohomology},
url = {http://eudml.org/doc/89677},
volume = {53},
year = {1984},
}
TY - JOUR
AU - Vogan, David A.
AU - Zuckerman, Gregg J.
TI - Unitary representations with non-zero cohomology
JO - Compositio Mathematica
PY - 1984
PB - Martinus Nijhoff Publishers
VL - 53
IS - 1
SP - 51
EP - 90
LA - eng
KW - automorphic forms; cohomology of locally symmetric spaces; infinite- dimensional representations; semisimple group; reductive Lie group; Lie algebra; unitary irreducible representations; Harish-Chandra modules; vanishing theorem for cohomology
UR - http://eudml.org/doc/89677
ER -
References
top- [1] M.W. Baldoni-Silva and D. Barbasch: The unitary spectrum for real rank one groups. Invent. Math.72 (1983) 27-55. Zbl0561.22009MR696689
- [2] A. Borel and N. Wallach: Continuous cohomology, discrete subgroups, representations of reductive groups, Princeton University Press, Princeton, New Jersey (1980). Zbl0443.22010MR554917
- [3] W. Casselman and M.S. Osborne: The n-cohomology of representations with an infinitesimal character. Comp. Math.31 (1975) 219-227. Zbl0343.17006MR396704
- [4] T. Enright: Relative Lie algebra cohomology and unitary representations of complex Lie groups. Duke Math. J.46 (1979) 513-525. Zbl0427.22010MR544243
- [5] A. Guichardet: Cohomologie des groupes topologiques et des algèbres de Lie, CEDIC-Fernand Nathan, Paris (1980). Zbl0464.22001MR644979
- [6] Harish-Chandra: Representations of semi-simple Lie groups I. Trans. Amer. Math. Soc.75 (1953) 185-243. Zbl0051.34002MR56610
- [7] S. Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978). Zbl0451.53038MR514561
- [8] R. Hotta and R. Parthasarathy: A geometric meaning of the multiplicities of integrable discrete classes in L2(Γ). Osaka J. Math.10 (1973) 211-234. Zbl0337.22016
- [9] J. Humphreys: Introduction to Lie algebras and representation theory. Springer-Verlag, New YorkHeidelbergBerlin (1972). Zbl0254.17004MR323842
- [10] S. Kumaresan: The canonical f-types of the irreducible unitary g-modules with non-zero relative cohomology. Invent. Math.59 (1980) 1-11. Zbl0442.22010MR575078
- [11] R. Parthasarathy: Dirac operator and the discrete series. Ann. Math.96 (1972) 1-30. Zbl0249.22003MR318398
- [12] R. Parthasarathy: A generalization of the Enright-Varadarajan modules. Comp. Math.36 (1978) 53-73. Zbl0384.17005MR515037
- [13] R. Parthasarathy: Criteria for the unitarizability of some highest weight modules. Proc. Indian Acad. Sci.89 (1980) 1-24.. Zbl0434.22011MR573381
- [14] K.R. Parthasarathy, R. Ranga Rao and V.S. Varadarajan: Representations of complex semi-simple Lie groups and Lie algebras. Ann. Math.85 (1967) 383-429. Zbl0177.18004MR225936
- [15] B. Speh: Unitary representations of GL(n, R) with non-trivial (g, K ) cohomology. Invent. Math.71 (1983) 443-465. Zbl0505.22015MR695900
- [16] B. Speh: Unitary representations of SL(n, R) and the cohomology of congruence subgroups, In. Noncommutative Harmonic Analysis and Lie Groups, Lecture Notes in Mathematics880, Springer-Verlag, BerlinHeidelbergNew York (1981). Zbl0516.22008MR644844
- [17] B. Speh and D. Vogan: Reducibility of generalized principal series representations. Acta Math.145 (1980) 227-299. Zbl0457.22011MR590291
- [18] D. Vogan: The algebraic structure of the representations of semi-simple Lie groups I. Ann. Math.109 (!979) 1-60. Zbl0424.22010MR519352
- [19] D. Vogan: Representations of real reductive Lie groups, Birkhäuser, Boston-Vasel-Stuttgart (1981). Zbl0469.22012MR632407
- [20] G. Warner: Harmonic analysis on semi-simple Lie groups I, Springer-Verlag, BerlinHeidelbergNew York (1972). Zbl0265.22020MR498999
- [21] J. Rawnsley, W. Schmid and J. Wolf: Singular unitary representations and indefinite harmonic theory, to appear in J. Func. Anal., 1983. Zbl0511.22005MR699229
Citations in EuDML Documents
top- Siddhartha Sahi, The Capelli identity and unitary representations
- Shingo Murakami, Vanishing theorems on cohomology associated to hermitian symmetric spaces
- David A.jun. Vogan, Unitary Representations of Reductive Lie Groups
- Susana Salamanca Riba, On the unitary dual of some classical Lie groups
- Jens Franke, Harmonic analysis in weighted -spaces
- Steven Zucker, -cohomology and intersection homology of locally symmetric varieties, II
- Joachim Schwermer, On arithmetic quotients of the Siegel upper half space of degree two
- Laurent Clozel, Progrès récents vers la classification du dual unitaire des groupes réductifs réels
- Laurent Clozel, Patrick Delorme, Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II
- Jürgen Rohlfs, Birgit Speh, Representations with cohomology in the discrete spectrum of subgroups of and Lefschetz numbers
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.