Semi-classical analysis for Harper's equation. III : Cantor structure of the spectrum

B. Helffer; J. Sjöstrand

Mémoires de la Société Mathématique de France (1989)

  • Volume: 39, page 1-124
  • ISSN: 0249-633X

How to cite

top

Helffer, B., and Sjöstrand, J.. "Semi-classical analysis for Harper's equation. III : Cantor structure of the spectrum." Mémoires de la Société Mathématique de France 39 (1989): 1-124. <http://eudml.org/doc/94884>.

@article{Helffer1989,
author = {Helffer, B., Sjöstrand, J.},
journal = {Mémoires de la Société Mathématique de France},
keywords = {Harper's operator; microlocalization; renormalization; spectrum; periodic magnetic Schrödinger operator},
language = {eng},
pages = {1-124},
publisher = {Société mathématique de France},
title = {Semi-classical analysis for Harper's equation. III : Cantor structure of the spectrum},
url = {http://eudml.org/doc/94884},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Helffer, B.
AU - Sjöstrand, J.
TI - Semi-classical analysis for Harper's equation. III : Cantor structure of the spectrum
JO - Mémoires de la Société Mathématique de France
PY - 1989
PB - Société mathématique de France
VL - 39
SP - 1
EP - 124
LA - eng
KW - Harper's operator; microlocalization; renormalization; spectrum; periodic magnetic Schrödinger operator
UR - http://eudml.org/doc/94884
ER -

References

top
  1. [AM] R. Abraham, J. Marsden, Foundations of Mechanics, Benjamin/Cumming publ. Co. (1978), Zbl0393.70001MR81e:58025
  2. [AuAn] S. Aubry, C. André, Proc. Israel Phys. Soc. Ed.C.G.Kuper 3 (Adam Hilger, Bristol) (1979), 133-, Zbl0943.82510
  3. [AvSi] J. Avron, B. Simon, Stability of gaps for periodic potentials under a variation of a magnetic field, J. Phys. A, 18 (1985), 2199-2205, Zbl0586.35084MR87e:81039
  4. [Az] Ya. Azbel, Energy spectrum of a conduction electron in a magnetic field, Soviet Physics JETP, 19, n°3, Sept 1964. 
  5. [Be] J. Bellissard, Schrödinger operators with almost periodic potentials, Springer Lecture Notes in Physics, 153, 
  6. [BeSi] J. Bellissard, B. Simon, Cantor spectrum for the almost Mathieu equation, J. Funct. An., 48, n°3, Oct. 1982, Zbl0516.47018MR84h:81019
  7. [GeS] C. Gérard, J. Sjöstrand, Semi-classical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys., 108 (1987), 391-421. Zbl0637.35027
  8. [GrS] A. Grigis, J. Sjöstrand, Front d'onde analytique et sommes de carrés de champs de vecteurs, Duke Math. J., 52, n° 1 (1985), 35-51, Zbl0581.35009MR86h:58136
  9. [HR1] B. Helffer, D. Robert, Calcul fonctionnel par la transformée de Mellin et applications, J. Funct. An., 53, n°3, oct. 1983. MR85i:47052
  10. [HR2] B. Helffer, D. Robert, Puits de potentiel généralisés et asymptotique semiclassique, Ann. I.H.P. (section Phys. théorique), 41, n°3, (1984), 291-331, Zbl0565.35082MR86m:81049
  11. [HS1] B. Helffer, J. Sjöstrand, Analyse semi-classique pour l'équation de Harper, Preprint (1987) Zbl0634.35056
  12. [HS2] B. Helffer, J. Sjöstrand, Analyse semi-classique pour l'équation de Harper II Comportement semi-classique près d'un rationnel, Preprint. Zbl0714.34131
  13. [HS3] B. Helffer, J. Sjöstrand, Structure Cantorienne du spectre de l'opérateur de Harper, Sém. des Equations aux Dérivées partielles, Ecole polytechnique, March 1988, Zbl0666.34012
  14. [HS4] B. Helffer, J. Sjöstrand, Multiple wells in the semiclassical limit I, Comm. PDE, 9(4) (1984), 337-408, Zbl0546.35053MR86c:35113
  15. [HS5] B. Helffer, J. Sjöstrand, Multiple wells in the semiclassical limit II, Ann. I.H.P. (section Phys. théorique), 42, n°2, (1985), 127-212, Zbl0595.35031
  16. [HS6] B. Helffer, J. Sjöstrand, Effet tunnel pour l'équation de Schrödinger avec champ magnétique, Ann. Sc. Norm. Sup., to appear, Zbl0699.35205
  17. [HS7] B. Helffer, J. Sjöstrand, Résonances en limite semi-classique, Bull. de la SMF, 114, fasc. 3, (mémoire n°24-25). Zbl0631.35075
  18. [Ho] D. Hofstadter, Energy levels and wave functions for Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B 14 (1976), 2239-2249, 
  19. [L] J. Leray, Lagrangian analysis and quantum mechanics, MIT Press (1981). Zbl0483.35002MR83k:58081a
  20. [Mo] P. Van Mouche, The coexistence problem for the discrete Mathieu operator, Preprint (1988), 
  21. [No] S.P. Novikov, Two dimensional operators in periodic fields, J. Sov. Math., 28, n°1, January 1985, 
  22. [O] F.W.J. Olver, Asymptotics and special functions, Academic Press, New York, London, 1974. Zbl0308.41023MR55 #8655
  23. [Si] B. Simon, Almost periodic Schrödinger operators: a review, Advances in applied math. 3, (1982), 463-490, Zbl0545.34023MR85d:34030
  24. [S1] J. Sjöstrand, Singularités analytiques microlocales, Astérisque 95 (1982), Zbl0524.35007MR84m:58151
  25. [S2] J. Sjöstrand, Resonances generated by non-degenerate critical points, Springer Lecture Notes in Mathematics, n°1256, 402-429, Zbl0627.35074
  26. [So] J.B. Sokoloff, Unusual band structure, wave functions and electrical conductance in crystals with incommensurate periodic potentials, Physics reports (review section of Physics letters), 126, n°4 (1985), 189-244, 
  27. [W1] M. Wilkinson, Critical properties of electron eigenstates in incommensurate systems, Proc. R. Soc. London A391 (1984), 305-350, MR86b:81136
  28. [W2] M. Wilkinson, Von Neumann lattices of Wannier functions for Bloch electrons in a magnetic field, Proc. R. Soc. London A403 (1986), 135-166, MR87f:81178
  29. [W3] M. Wilkinson, An exact effective Hamiltonian for a perturbed Landau level, Journal of Phys. A, 20, n°7, 11-May 1987, 1761-, Zbl0639.47010MR88g:81157
  30. [W4] M. Wilkinson, An exact renormalisation group for Bloch electrons in a magnetic field, Journal of Physics A, to appear. 

Citations in EuDML Documents

top
  1. Yves Colin de Verdière, Bernard Parisse, Équilibre instable en régime semi-classique. II. Conditions de Bohr-Sommerfeld
  2. Y. Colin de Verdière, B. Parisse, Équilibre instable en régime semi-classique
  3. A. Grigis, Résonances par correspondance
  4. Johannes Sjöstrand, Maciej Zworski, Elementary linear algebra for advanced spectral problems
  5. Michael Hitrik, Karel Pravda-Starov, Eigenvalues and subelliptic estimates for non-selfadjoint semiclassical operators with double characteristics
  6. San Vũ Ngọc, Conditions de Bohr-Sommerfeld pour les singularités focus-focus et monodromie quantique
  7. Alexander Fedotov, Frédéric Klopp, Transitions d’Anderson pour des opérateurs de Schrödinger quasi-périodiques en dimension 1
  8. M. Rouleux, Résonances de Feschbach en limite semi-classique
  9. Hamadi Baklouti, Asymptotique des largeurs de résonances pour un modèle d'effet tunnel microlocal
  10. Philippe Kerdelhue, Équation de Schrödinger magnétique périodique avec symétrie d'ordre six : mesure du spectre II

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.