On montre que si G est un groupe abélien localment compact non diskret à base dénombrable d'ouverts, alors la famille des fermés de synthèse pour l'algèbre de Fourier A(G) est une partie coanalytique non borélienne de ℱ(G), l'ensemble des fermés de G muni de la structure borélienne d'Effros. On généralise ainsi un résultat connu dans le cas du groupe 𝕋.
Let X be a Polish space, and let be a sequence of hereditary subsets of K(X) (the space of compact subsets of X). We give a general criterion which allows one to decide whether is a true subset of K(X). We apply this criterion to show that several natural families of thin sets from harmonic analysis are true .
On étend au cadre des groupes abéliens localement compacts certains résultats obtenus notamment par G. Debs, R. Kaufman, A. Kechris, A. Louveau et J. Saint Raymond sur la structure des fermés d’unicité et d’unicité au sens large du cercle unité. On montre également que de très nombreuses familles de compacts issues de l’Analyse Harmonique sont exactement de troisième classe dans la hiérarchie de Baire. Comme application, on donne une démonstration simple de l’existence d’ensembles de Dirichlet qui...
We study the frequency of hypercyclicity of hypercyclic, non–weakly mixing linear operators. In particular, we show that on the space , any sublinear frequency can be realized by a non–weakly mixing operator. A weaker but similar result is obtained for or , . Part of our results is related to some Sidon-type lacunarity properties for sequences of natural numbers.
We show that a comeager Π₁¹ hereditary family of compact sets must have a dense subfamily which is also hereditary. Using this, we prove an “abstract” result which implies the existence of independent ℳ ₀-sets, the meagerness of ₀-sets with the property of Baire, and generalizations of some classical results of Mycielski. Finally, we also give some natural examples of true sets.
We study the ``smallness'' of the set of non-hypercyclic vectors for some classical hypercyclic operators.
Download Results (CSV)