Aldo Andreotti
We formulate and prove a super analogue of the complex Frobenius theorem of Nirenberg.
Necessary topological conditions are given for the closed CR embedding of a CR manifold into a Stein manifold or into a complex projective space.
In questo lavoro si dà un criterio sufficiente per l'immersione di una varietà CR astratta di codimensione arbitraria in una di codimensione CR più bassa. La condizione trovata è necessaria per l'immersione in una varietà complessa (codimensione CR uguale a zero). Essa è formulata in termini dell'esistenza di una sottoalgebra di Lie di campi di vettori complessi trasversale alla distribuzione di Cauchy-Riemann.
We study the local geometry of n dimensional manifolds which are equipped with two integrable distributions, one of dimension and one of dimension , where and are allowed to be unequal. We call them para-CR structures of type , with being the para-CR codimension. When they are the real analogues of CR structures. In the general case these structures are the natural geometric setting in which to discuss the geometry of systems of ODE's, as well as the geometry of systems of PDE's of finite...
For pseudocomplex abstract manifolds, the validity of the Poincaré Lemma for forms implies local embeddability in . The two properties are equivalent for hypersurfaces of real dimension . As a corollary we obtain a criterion for the non validity of the Poicaré Lemma for forms for a large class of abstract manifolds of codimension larger than one.
Page 1 Next