We consider typical analytic unimodal maps which possess a chaotic attractor. Our main result is an explicit combinatorial formula for the exponents of periodic orbits. Since the exponents of periodic orbits form a complete set of smooth invariants, the smooth structure is completely determined by purely topological data (“typical rigidity”), which is quite unexpected in this setting. It implies in particular that the lamination structure of spaces of analytic unimodal maps (obtained by the partition...
Soit un difféomorphisme d’une surface possédant deux fers à cheval tels que et aient en un point une tangence quadratique isolée. Nous montrons que, si la somme des dimensions transverses de et est strictement plus grande que 1, les difféomorphismes voisins de tels que et soient stablement tangents au voisinage de forment une partie de densité inférieure strictement positive en .
Let F : U ⊂ R → R be a differentiable function and p < m an integer. If k ≥ 1 is an integer, α ∈ [0, 1] and F ∈ C, if we set C(F) = {x ∈ U | rank(Df(x)) ≤ p} then the Hausdorff measure of dimension (p + (n-p)/(k+α)) of F(C(F)) is zero.
Download Results (CSV)