Une généralisation de la géométrie du plongement
Une formule de résidus est demontrée pour les classes caractéristiques de degré suffisamment grand du fibré normal à une sous variété lisse d’une variété , invariante relativement à un feuilletage avec singularités dans . En particulier, dans le cas analytique complexe, et pour les feuilletages dont les feuilles sont de dimension complexe 1, les nombres de Chern du fibre normal à la sous-variété sont calculés en termes de résidus de Grothendieck, par une formule qui généralise au cas de dimensions...
Le but de ce travail est double : d’une part, généraliser la construction des classes exotiques pour l’appliquer à d’autres problèmes géométriques que ceux issus des -structures ; d’autre part, préciser, grâce à la notion de -connexité, remplaçant avantageusement les formules de dérivation utilisées précédemment, l’argument d’invariance homotopique permettant d’obtenir des théorèmes de rigidité, montrant simultanément pourquoi la seule connexité des ensembles de connexions considérés ne suffit...
Un “théorème des résidus” est donné, qui exprime les classes caractéristiques réelles de dimension d’un fibré principal à l’aide d’une connexion définie seulement au-dessus d’un voisinage du -squelette d’une triangulation de la base. Ce théorème coiffe simultanément la théorie de Chern-Weil, la théorie de l’obstruction modulo torsion, ainsi que des formules du type Riemann-Hurwitz pour les revêtements ramifiés.
Le tenseur de structure à l’ordre , à valeurs dans la cohomologie de Spencer , est défini comme cas particulier d’un formalisme très simple exprimant l’obstruction à ce que l’intersection de deux sous-fibrés principaux d’un même fibré principal se projette sur toute la base.
Beaucoup de concepts sur les tissus n’ont été étudiés que localement. Il apparaît que certains d’entre eux se laissent globaliser, mais pas toujours de façon immédiate. Le premier objectif de cet article est de préciser à chaque fois ce qu’il en est, et de mettre en place les outils utiles à une étude globale des tissus sur une surface holomorphe arbitraire, et en particulier sur le plan projectif complexe . Certains concepts nouveaux vont alors apparaître, tels le type (ou le degré si ), la...
The webs have been studied mainly locally, near regular points (see a short list of references on the topic in the bibliography). Let d be an integer ≥ 1. A d-web on an open set U of ℂ² is a differential equation F(x,y,y’) = 0 with , where the coefficients are holomorphic functions, a₀ being not identically zero. A regular point is a point (x,y) where the d roots in y’ are distinct (near such a point, we have locally d foliations mutually transverse to each other, and caustics appear through...
Page 1