The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Entire solutions in 2 for a class of Allen-Cahn equations

Francesca AlessioPiero Montecchiari — 2005

ESAIM: Control, Optimisation and Calculus of Variations

We consider a class of semilinear elliptic equations of the form - ε 2 Δ u ( x , y ) + a ( x ) W ' ( u ( x , y ) ) = 0 , ( x , y ) 2 where ε > 0 , a : is a periodic, positive function and W : is modeled on the classical two well Ginzburg-Landau potential W ( s ) = ( s 2 - 1 ) 2 . We look for solutions to (1) which verify the asymptotic conditions u ( x , y ) ± 1 as x ± uniformly with respect to y . We show via variational methods that if ε is sufficiently small and a is not constant, then (1) admits infinitely many of such solutions, distinct up to translations, which do not exhibit one...

Entire solutions in 2 for a class of Allen-Cahn equations

Francesca AlessioPiero Montecchiari — 2010

ESAIM: Control, Optimisation and Calculus of Variations

We consider a class of semilinear elliptic equations of the form 15.7cm - ε 2 Δ u ( x , y ) + a ( x ) W ' ( u ( x , y ) ) = 0 , ( x , y ) 2 where ε > 0 , a : is a periodic, positive function and W : is modeled on the classical two well Ginzburg-Landau potential W ( s ) = ( s 2 - 1 ) 2 . We look for solutions to ([see full textsee full text]) which verify the asymptotic conditions u ( x , y ) ± 1 as x ± uniformly with respect to y . We show variational methods that if is sufficiently small and is not constant, then ([see full textsee full text]) admits infinitely many of such solutions, distinct up...

On the existence of infinitely many solutions for a class of semilinear elliptic equations in R N

Francesca AlessioPaolo CaldiroliPiero Montecchiari — 1998

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We show, by variational methods, that there exists a set A open and dense in a L R N : a 0 such that if a A then the problem - u + u = a x u p - 1 u , u H 1 R N , with p subcritical (or more general nonlinearities), admits infinitely many solutions.

Infinitely many solutions for a class of semilinear elliptic equations in R N

Francesca AlessioPaolo CaldiroliPiero Montecchiari — 2001

Bollettino dell'Unione Matematica Italiana

Si considera una classe di equazioni ellittiche semilineari su R N della forma - Δ u + u = a x u p - 1 u con p > 1 sottocritico (o con nonlinearità più generali) e a x funzione limitata. In questo articolo viene presentato un risultato di genericità sull'esistenza di infinite soluzioni, rispetto alla classe di coefficienti a x limitati su R N e non negativi all'infinito.

Page 1

Download Results (CSV)