The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For a Schrödinger operator A = -Δ + V, where V is a nonnegative polynomial, we define a Hardy space associated with A. An atomic characterization of is shown.
Let A = -Δ + V be a Schrödinger operator on , d ≥ 3, where V is a nonnegative potential satisfying the reverse Hölder inequality with an exponent q > d/2. We say that f is an element of if the maximal function belongs to , where is the semigroup generated by -A. It is proved that for d/(d+1) < p ≤ 1 the space admits a special atomic decomposition.
Let be the semigroup of linear operators generated by a Schrödinger operator -L = Δ - V with V ≥ 0. We say that f belongs to if . We state conditions on V and which allow us to give an atomic characterization of the space .
Let {T} be the semigroup of linear operators generated by a Schrödinger operator -A = Δ - V, where V is a nonnegative potential that belongs to a certain reverse Hölder class. We define a Hardy space H
by means of a maximal function associated with the semigroup {T}. Atomic and Riesz transforms characterizations of H
are shown.
The aim of this paper is to demonstrate how a fairly simple nilpotent Lie algebra can be used as a tool to study differential operators on with polynomial coefficients, especially when the property studied depends only on the degree of the polynomials involved and/or the number of variables.
Let L be a positive Rockland operator of homogeneous degree d on a graded homogeneous group G and let be the convolution kernels of the semigroup generated by L. We prove that if τ(x) is a Riemannian distance of x from the unit element, then there are constants c>0 and C such that . Moreover, if G is not stratified, more precise estimates of at infinity are given.
Let 𝓓 be a symmetric Siegel domain of tube type and S be a solvable Lie group acting simply transitively on 𝓓. Assume that L is a real S-invariant second order operator that satisfies Hörmander's condition and annihilates holomorphic functions. Let H be the Laplace-Beltrami operator for the product of upper half planes imbedded in 𝓓. We prove that if F is an L-Poisson integral of a BMO function and HF = 0 then F is pluriharmonic. Some other related results are also considered.
Let G be a compactly generated, locally compact group with polynomial growth and let ω be a weight on G. We look for general conditions on the weight which allow us to develop a functional calculus on a total part of L(G,ω). This functional calculus is then used to study harmonic analysis properties of L(G,ω), such as the Wiener property and Domar's theorem.
Download Results (CSV)