The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We investigate the minimum time transfer of a satellite around the Earth. Using an optimal control model, we study the controllability of the system and propose a geometrical analysis of the optimal command structure. Furthermore, in order to solve the problem numerically, a new parametric technique is introduced for which convergence properties are established.
We investigate the minimum time transfer of a
satellite around the Earth. Using an optimal control model, we study
the controllability of the system and propose a geometrical analysis
of the optimal command structure. Furthermore, in order to solve the
problem numerically, a new parametric technique is introduced for
which convergence properties are established.
In a recent article [B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, 26 (2009) 1081–1098], we relate the computation of the conjugate and cut loci of a family of metrics on two-spheres of revolution whose polar form is = d
+ ()d
to the period mapping of the -variable. One purpose of this article is to use this relation to evaluate the cut and conjugate loci for a family of metrics arising as a deformation of the round sphere and to determine the convexity properties...
The aim of this article is to present algorithms to compute the first
conjugate time along a smooth extremal curve, where the trajectory
ceases to be optimal. It is based on recent theoretical developments
of geometric optimal control, and the article contains a review
of second order optimality conditions.
The computations are related to a test
of positivity of the intrinsic second order derivative or a test of
singularity of the extremal flow. We derive an algorithm called COTCOT
(Conditions...
Download Results (CSV)