The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

On the motion of a curve by its binormal curvature

Jerrard, Robert L.Didier Smets — 2015

Journal of the European Mathematical Society

We propose a weak formulation for the binormal curvature flow of curves in 3 . This formulation is sufficiently broad to consider integral currents as initial data, and sufficiently strong for the weak-strong uniqueness property to hold, as long as self-intersections do not occur. We also prove a global existence theorem in that framework.

Vortex filament dynamics for Gross-Pitaevsky type equations

Robert L. Jerrard — 2002

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We study solutions of the Gross-Pitaevsky equation and similar equations in m 3 space dimensions in a certain scaling limit, with initial data u 0 ϵ for which the jacobian J u 0 ϵ concentrates around an (oriented) rectifiable m - 2 dimensional set, say  Γ 0 , of finite measure. It is widely conjectured that under these conditions, the jacobian at later times t > 0 continues to concentrate around some codimension 2 submanifold, say Γ t , and that the family { Γ t } of submanifolds evolves by binormal mean curvature flow. We prove...

A new proof of the rectifiable slices theorem

Robert L. Jerrard — 2002

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

This paper gives a new proof of the fact that a k -dimensional normal current T in m is integer multiplicity rectifiable if and only if for every projection P onto a k -dimensional subspace, almost every slice of T by P is 0 -dimensional integer multiplicity rectifiable, in other words, a sum of Dirac masses with integer weights. This is a special case of the Rectifiable Slices Theorem, which was first proved a few years ago by B. White.

Local minimizers with vortex filaments for a Gross-Pitaevsky functional

Robert L. Jerrard — 2007

ESAIM: Control, Optimisation and Calculus of Variations

This paper gives a rigorous derivation of a functional proposed by Aftalion and Rivière [ (2001) 043611] to characterize the energy of vortex filaments in a rotationally forced Bose-Einstein condensate. This functional is derived as a -limit of scaled versions of the Gross-Pitaevsky functional for the wave function of such a condensate. In most situations, the vortex filament energy functional is either unbounded below or has only trivial minimizers, but we establish the existence...

On Schrödinger maps from T 1 to  S 2

Robert L. JerrardDidier Smets — 2012

Annales scientifiques de l'École Normale Supérieure

We prove an estimate for the difference of two solutions of the Schrödinger map equation for maps from T 1 to  S 2 . This estimate yields some continuity properties of the flow map for the topology of  L 2 ( T 1 , S 2 ) , provided one takes its quotient by the continuous group action of  T 1 given by translations. We also prove that without taking this quotient, for any t > 0 the flow map at time t is discontinuous as a map from 𝒞 ( T 1 , S 2 ) , equipped with the weak topology of  H 1 / 2 , to the space of distributions ( 𝒞 ( T 1 , 3 ) ) * . The argument relies in an essential...

Page 1

Download Results (CSV)