The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 27

Showing per page

Order by Relevance | Title | Year of publication

A note on the diophantine equation k 2 - 1 = q n + 1

Maohua Le — 1998

Colloquium Mathematicae

In this note we prove that the equation k 2 - 1 = q n + 1 , q 2 , n 3 , has only finitely many positive integer solutions ( k , q , n ) . Moreover, all solutions ( k , q , n ) satisfy k 10 10 182 , q 10 10 165 and n 2 · 10 17 .

On the diophantine equation ( x m + 1 ) ( x n + 1 ) = y ²

Maohua Le — 1997

Acta Arithmetica

1. Introduction. Let ℤ, ℕ, ℚ be the sets of integers, positive integers and rational numbers respectively. In [7], Ribenboim proved that the equation    (1) ( x m + 1 ) ( x n + 1 ) = y ² , x,y,m,n ∈ ℕ, x > 1, n > m ≥ 1, has no solution (x,y,m,n) with 2|x and (1) has only finitely many solutions (x,y,m,n) with 2∤x. Moreover, all solutions of (1) with 2∤x satisfy max(x,m,n) < C, where C is an effectively computable constant. In this paper we completely determine all solutions of (1) as follows.   Theorem. Equation (1)...

Page 1 Next

Download Results (CSV)