The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Weak extent in normal spaces

Ronnie LevyMikhail Matveev — 2005

Commentationes Mathematicae Universitatis Carolinae

If X is a space, then the we ( X ) of X is the cardinal min { α : If 𝒰 is an open cover of X , then there exists A X such that | A | = α and St ( A , 𝒰 ) = X } . In this note, we show that if X is a normal space such that | X | = 𝔠 and we ( X ) = ω , then X does not have a closed discrete subset of cardinality 𝔠 . We show that this result cannot be strengthened in ZFC to get that the extent of X is smaller than 𝔠 , even if the condition that we ( X ) = ω is replaced by the stronger condition that X is separable.

On monotone Lindelöfness of countable spaces

Ronnie LevyMikhail Matveev — 2008

Commentationes Mathematicae Universitatis Carolinae

A space is monotonically Lindelöf (mL) if one can assign to every open cover 𝒰 a countable open refinement r ( 𝒰 ) so that r ( 𝒰 ) refines r ( 𝒱 ) whenever 𝒰 refines 𝒱 . We show that some countable spaces are not mL, and that, assuming CH, there are countable mL spaces that are not second countable.

Sequential + separable vs sequentially separable and another variation on selective separability

Angelo BellaMaddalena BonanzingaMikhail Matveev — 2013

Open Mathematics

A space X is sequentially separable if there is a countable D ⊂ X such that every point of X is the limit of a sequence of points from D. Neither “sequential + separable” nor “sequentially separable” implies the other. Some examples of this are presented and some conditions under which one of the two implies the other are discussed. A selective version of sequential separability is also considered.

Page 1

Download Results (CSV)