The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In questa Nota presentiamo alcuni teoremi di confronto tra il movimento secondo la curvatura media ottenuto con il metodo delle minime barriere di De Giorgi e i movimenti definiti con i metodi di Evans-Spruck, Chen-Giga-Goto, Giga-Goto-Ishii-Sato.
The numerical minimization of the functional , is addressed. The function is continuous, has linear growth, and is convex and positively homogeneous of degree one in the second variable. We prove that can be equivalently minimized on the convex set and then regularized with a sequence , of stricdy convex functionals defined on . Then both and , can be discretized by continuous linear finite elements. The convexity property of the functionals on is useful in the numerical minimization...
We provide two examples of a regular curve evolving by curvature with a forcing term, which degenerates in a set having an interior part after a finite time.
The numerical approximation of the minimum problem: , is considered, where . The solution to this problem is a set with prescribed mean curvature and contact angle at the intersection of with . The functional is first relaxed with a sequence of nonconvex functionals defined in which, in turn, are discretized by finite elements. The -convergence of the discrete functionals to as well as the compactness of any sequence of discrete absolute minimizers are proven.
We address the numerical minimization of the functional , for . We note that can be equivalently minimized on the larger, convex, set and that, on that space, may be regularized with a sequence of regular functionals. Then both and can be discretized by continuous linear finite elements. The convexity of the functionals in is useful for the numerical minimization of . We prove the -convergence of the discrete functionals to and present a few numerical examples.
Download Results (CSV)