The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

Gruppi con identità semigruppali: su una congettura di M. V. Sapir

Patrizia LongobardiMercede MajJames Wiegold — 1991

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

M. V. Sapir ha formulato la seguente congettura: non esiste un semigruppo S infinito, finitamente generabile, soddisfacente l'identità x 2 = 0 e immagine omomorfa di un sottosemigruppo di un gruppo G nilpotente. Se ciò vale, ogni gruppo risolubile con una base finita per le sue identità semigruppali è abeliano o di esponente finito. In questo lavoro si prova la congettura di Sapir quando l'interderivato γ 3 G è periodico o se S è 3 -generato e γ 4 G è periodico.

Su di un problema combinatorio in teoria dei gruppi

Mario CurzioPatrizia LongobardiMercede Maj — 1983

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let G be a group and n an integer 2 . We say that G has the n -permutation property ( G P n ) if, for any elements x 1 , x 2 , , x n in G , there exists some permutation σ of { 1 , 2 , , n } , σ i d . such that x 1 , x 2 , , x n = x σ ( 1 ) , x σ ( 2 ) , , x σ ( n ) . We prouve that every group G P n is an FC-nilpotent group of class n - 1 , and that a finitely generated group has the n -permutation property (for some n ) if, and only if, it is abelian by finite. We prouve also that a group G P 3 if, and only if, its derived subgroup has order at most 2.

Su di un problema combinatorio in teoria dei gruppi

Mario CurzioPatrizia LongobardiMercede Maj — 1983

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Let G be a group and n an integer 2 . We say that G has the n -permutation property ( G P n ) if, for any elements x 1 , x 2 , , x n in G , there exists some permutation σ of { 1 , 2 , , n } , σ i d . such that x 1 , x 2 , , x n = x σ ( 1 ) , x σ ( 2 ) , , x σ ( n ) . We prouve that every group G P n is an FC-nilpotent group of class n - 1 , and that a finitely generated group has the n -permutation property (for some n ) if, and only if, it is abelian by finite. We prouve also that a group G P 3 if, and only if, its derived subgroup has order at most 2.

On absolutely-nilpotent of class k groups

Patrizia LongobardiTrueman MacHenryMercede MajJames Wiegold — 1995

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A group G in a variety V is said to be absolutely- V , and we write G A V , if central extensions by G are again in V . Absolutely-abelian groups have been classified by F. R. Beyl. In this paper we concentrate upon the class A N k of absolutely-nilpotent of class k groups. We prove some closure properties of the class A N k and we show that every nilpotent of class k group can be embedded in an A N k -gvoup. We describe all metacyclic A N k -groups and we characterize 2 -generator and infinite 3 -generator A N 2 -groups. Finally...

Page 1

Download Results (CSV)