We study eigenfrequencies and propagator expansions for damped wave equations on compact manifolds. In the strongly damped case, the propagator is shown to admit an expansion in terms of the finitely many eigenmodes near the real axis, with an error exponentially decaying in time. In the presence of an elliptic closed geodesic not meeting the support of the damping coefficient, we show that there exists a sequence of eigenfrequencies converging rapidly to the real axis. In the case of Zoll manifolds,...
We study low lying eigenvalues for non-selfadjoint semiclassical differential operators, where symmetries play an important role. In the case of the Kramers-Fokker-Planck operator, we show how the presence of certain supersymmetric and -symmetric structures leads to precise results concerning the reality and the size of the exponentially small eigenvalues in the semiclassical (here the low temperature) limit. This analysis also applies sometimes to chains of oscillators coupled to two heat baths,...
We study spectral asymptotics and resolvent bounds for non-selfadjoint perturbations of selfadjoint -pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part is completely integrable. Spectral contributions coming from rational invariant Lagrangian tori are analyzed. Estimating the tunnel effect between strongly irrational (Diophantine) and rational tori, we obtain an accurate description of the spectrum in a suitable complex window, provided that the...
For a class of non-selfadjoint –pseudodifferential operators with double characteristics, we give a precise description of the spectrum and establish accurate semiclassical resolvent estimates in a neighborhood of the origin. Specifically, assuming that the quadratic approximations of the principal symbol of the operator along the double characteristics enjoy a partial ellipticity property along a suitable subspace of the phase space, namely their singular space, we give a precise description of...
Download Results (CSV)