Sur le théorème de Torelli pour les solides doubles quartiques
Étant donnée une variété kählérienne compacte , on étudie dans l’espace vectoriel réel de cohomologie de Dolbeault le cône convexe des classes de Kähler ainsi que celui, plus grand, des classes de courants positifs fermés de type . Lorsque est projective, les traces de ces cônes sur l’espace de Néron–Severi engendré par les classes entières sont respectivement le cône des classes de diviseurs amples et l’adhérence de celui des classes de diviseurs effectifs.
To any finite covering of degree between smooth complex projective manifolds, one associates a vector bundle of rank on whose total space contains . It is known that is ample when is a projective space ([Lazarsfeld 1980]), a Grassmannian ([Manivel 1997]), or a Lagrangian Grassmannian ([Kim Maniel 1999]). We show an analogous result when is a simple abelian variety and does not factor through any nontrivial isogeny . This result is obtained by showing that is -regular in the...
In this article, we prove that there does not exist a family of maximal rank of entire curves in the universal family of hypersurfaces of degree in the complex projective space . This can be seen as a weak version of the Kobayashi conjecture asserting that a general projective hypersurface of high degree is hyperbolic in the sense of Kobayashi.
Page 1