The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we characterize certain classes of groups in which, from (, a fixed prime), it follows that . Our results extend results previously obtained by other authors, in the finite case.
M. V. Sapir ha formulato la seguente congettura: non esiste un semigruppo infinito, finitamente generabile, soddisfacente l'identità e immagine omomorfa di un sottosemigruppo di un gruppo nilpotente. Se ciò vale, ogni gruppo risolubile con una base finita per le sue identità semigruppali è abeliano o di esponente finito. In questo lavoro si prova la congettura di Sapir quando l'interderivato è periodico o se è -generato e è periodico.
Let be a group and an integer . We say that has the -permutation property if, for any elements in , there exists some permutation of , such that . We prouve that every group is an FC-nilpotent group of class , and that a finitely generated group has the -permutation property (for some ) if, and only if, it is abelian by finite. We prouve also that a group if, and only if, its derived subgroup has order at most 2.
Let be a group and an integer . We say that has the -permutation property if, for any elements in , there exists some permutation of , such that . We prouve that every group is an FC-nilpotent group of class , and that a finitely generated group has the -permutation property (for some ) if, and only if, it is abelian by finite. We prouve also that a group if, and only if, its derived subgroup has order at most 2.
A group in a variety is said to be absolutely-, and we write , if central extensions by are again in . Absolutely-abelian groups have been classified by F. R. Beyl. In this paper we concentrate upon the class of absolutely-nilpotent of class groups. We prove some closure properties of the class and we show that every nilpotent of class group can be embedded in an -gvoup. We describe all metacyclic -groups and we characterize -generator and infinite -generator -groups. Finally...
Download Results (CSV)