Epimorfismi -completi tra reticoli di sottogruppi normali
In this paper we characterize certain classes of groups in which, from (, a fixed prime), it follows that . Our results extend results previously obtained by other authors, in the finite case.
M. V. Sapir ha formulato la seguente congettura: non esiste un semigruppo infinito, finitamente generabile, soddisfacente l'identità e immagine omomorfa di un sottosemigruppo di un gruppo nilpotente. Se ciò vale, ogni gruppo risolubile con una base finita per le sue identità semigruppali è abeliano o di esponente finito. In questo lavoro si prova la congettura di Sapir quando l'interderivato è periodico o se è -generato e è periodico.
Let be a group and an integer . We say that has the -permutation property if, for any elements in , there exists some permutation of , such that . We prouve that every group is an FC-nilpotent group of class , and that a finitely generated group has the -permutation property (for some ) if, and only if, it is abelian by finite. We prouve also that a group if, and only if, its derived subgroup has order at most 2.
Let be a group and an integer . We say that has the -permutation property if, for any elements in , there exists some permutation of , such that . We prouve that every group is an FC-nilpotent group of class , and that a finitely generated group has the -permutation property (for some ) if, and only if, it is abelian by finite. We prouve also that a group if, and only if, its derived subgroup has order at most 2.
A group in a variety is said to be absolutely-, and we write , if central extensions by are again in . Absolutely-abelian groups have been classified by F. R. Beyl. In this paper we concentrate upon the class of absolutely-nilpotent of class groups. We prove some closure properties of the class and we show that every nilpotent of class group can be embedded in an -gvoup. We describe all metacyclic -groups and we characterize -generator and infinite -generator -groups. Finally...
Page 1