Currently displaying 1 – 20 of 21

Showing per page

Order by Relevance | Title | Year of publication

Some Facts about Trigonometry and Euclidean Geometry

Roland Coghetto — 2014

Formalized Mathematics

We calculate the values of the trigonometric functions for angles: [XXX] , by [16]. After defining some trigonometric identities, we demonstrate conventional trigonometric formulas in the triangle, and the geometric property, by [14], of the triangle inscribed in a semicircle, by the proposition 3.31 in [15]. Then we define the diameter of the circumscribed circle of a triangle using the definition of the area of a triangle and prove some identities of a triangle [9]. We conclude by indicating that...

Groups – Additive Notation

Roland Coghetto — 2015

Formalized Mathematics

We translate the articles covering group theory already available in the Mizar Mathematical Library from multiplicative into additive notation. We adapt the works of Wojciech A. Trybulec [41, 42, 43] and Artur Korniłowicz [25]. In particular, these authors have defined the notions of group, abelian group, power of an element of a group, order of a group and order of an element, subgroup, coset of a subgroup, index of a subgroup, conjugation, normal subgroup, topological group, dense subset and basis...

Morley’s Trisector Theorem

Roland Coghetto — 2015

Formalized Mathematics

Morley’s trisector theorem states that “The points of intersection of the adjacent trisectors of the angles of any triangle are the vertices of an equilateral triangle” [10]. There are many proofs of Morley’s trisector theorem [12, 16, 9, 13, 8, 20, 3, 18]. We follow the proof given by A. Letac in [15].

Semiring of Sets

Roland Coghetto — 2014

Formalized Mathematics

Schmets [22] has developed a measure theory from a generalized notion of a semiring of sets. Goguadze [15] has introduced another generalized notion of semiring of sets and proved that all known properties that semiring have according to the old definitions are preserved. We show that this two notions are almost equivalent. We note that Patriota [20] has defined this quasi-semiring. We propose the formalization of some properties developed by the authors.

Finite Product of Semiring of Sets

Roland Coghetto — 2015

Formalized Mathematics

We formalize that the image of a semiring of sets [17] by an injective function is a semiring of sets.We offer a non-trivial example of a semiring of sets in a topological space [21]. Finally, we show that the finite product of a semiring of sets is also a semiring of sets [21] and that the finite product of a classical semiring of sets [8] is a classical semiring of sets. In this case, we use here the notation from the book of Aliprantis and Border [1].

Convergent Filter Bases

Roland Coghetto — 2015

Formalized Mathematics

We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres) and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections).

Gauge Integral

Roland Coghetto — 2017

Formalized Mathematics

Some authors have formalized the integral in the Mizar Mathematical Library (MML). The first article in a series on the Darboux/Riemann integral was written by Noboru Endou and Artur Korniłowicz: [6]. The Lebesgue integral was formalized a little later [13] and recently the integral of Riemann-Stieltjes was introduced in the MML by Keiko Narita, Kazuhisa Nakasho and Yasunari Shidama [12]. A presentation of definitions of integrals in other proof assistants or proof checkers (ACL2, COQ, Isabelle/HOL,...

Pascal’s Theorem in Real Projective Plane

Roland Coghetto — 2017

Formalized Mathematics

In this article we check, with the Mizar system [2], Pascal’s theorem in the real projective plane (in projective geometry Pascal’s theorem is also known as the Hexagrammum Mysticum Theorem)1. Pappus’ theorem is a special case of a degenerate conic of two lines. For proving Pascal’s theorem, we use the techniques developed in the section “Projective Proofs of Pappus’ Theorem” in the chapter “Pappus’ Theorem: Nine proofs and three variations” [11]. We also follow some ideas from Harrison’s work....

Group of Homography in Real Projective Plane

Roland Coghetto — 2017

Formalized Mathematics

Using the Mizar system [2], we formalized that homographies of the projective real plane (as defined in [5]), form a group. Then, we prove that, using the notations of Borsuk and Szmielew in [3] “Consider in space ℝℙ2 points P1, P2, P3, P4 of which three points are not collinear and points Q1,Q2,Q3,Q4 each three points of which are also not collinear. There exists one homography h of space ℝℙ2 such that h(Pi) = Qi for i = 1, 2, 3, 4.” (Existence Statement 52 and Existence Statement 53) [3]. Or,...

Topology from Neighbourhoods

Roland Coghetto — 2015

Formalized Mathematics

Using Mizar [9], and the formal topological space structure (FMT_Space_Str) [19], we introduce the three U-FMT conditions (U-FMT filter, U-FMT with point and U-FMT local) similar to those VI, VII, VIII and VIV of the proposition 2 in [10]: If to each element x of a set X there corresponds a set B(x) of subsets of X such that the properties VI, VII, VIII and VIV are satisfied, then there is a unique topological structure on X such that, for each x ∈ X, B(x) is the set of neighborhoods of x in this...

Summable Family in a Commutative Group

Roland Coghetto — 2015

Formalized Mathematics

Hölzl et al. showed that it was possible to build “a generic theory of limits based on filters” in Isabelle/HOL [22], [7]. In this paper we present our formalization of this theory in Mizar [6]. First, we compare the notions of the limit of a family indexed by a directed set, or a sequence, in a metric space [30], a real normed linear space [29] and a linear topological space [14] with the concept of the limit of an image filter [16]. Then, following Bourbaki [9], [10] (TG.III, §5.1 Familles sommables...

Circumcenter, Circumcircle and Centroid of a Triangle

Roland Coghetto — 2016

Formalized Mathematics

We introduce, using the Mizar system [1], some basic concepts of Euclidean geometry: the half length and the midpoint of a segment, the perpendicular bisector of a segment, the medians (the cevians that join the vertices of a triangle to the midpoints of the opposite sides) of a triangle. We prove the existence and uniqueness of the circumcenter of a triangle (the intersection of the three perpendicular bisectors of the sides of the triangle). The extended law of sines and the formula of the radius...

Chebyshev Distance

Roland Coghetto — 2016

Formalized Mathematics

In [21], Marco Riccardi formalized that ℝN-basis n is a basis (in the algebraic sense defined in [26]) of [...] ℰTn T n and in [20] he has formalized that [...] ℰTn T n is second-countable, we build (in the topological sense defined in [23]) a denumerable base of [...] ℰTn T n . Then we introduce the n-dimensional intervals (interval in n-dimensional Euclidean space, pavé (borné) de ℝn [16], semi-intervalle (borné) de ℝn [22]). We conclude with the definition of Chebyshev distance [11].

Homography in ℝℙ

Roland Coghetto — 2016

Formalized Mathematics

The real projective plane has been formalized in Isabelle/HOL by Timothy Makarios [13] and in Coq by Nicolas Magaud, Julien Narboux and Pascal Schreck [12]. Some definitions on the real projective spaces were introduced early in the Mizar Mathematical Library by Wojciech Leonczuk [9], Krzysztof Prazmowski [10] and by Wojciech Skaba [18]. In this article, we check with the Mizar system [4], some properties on the determinants and the Grassmann-Plücker relation in rank 3 [2], [1], [7], [16], [17]....

Altitude, Orthocenter of a Triangle and Triangulation

Roland Coghetto — 2016

Formalized Mathematics

We introduce the altitudes of a triangle (the cevians perpendicular to the opposite sides). Using the generalized Ceva’s Theorem, we prove the existence and uniqueness of the orthocenter of a triangle [7]. Finally, we formalize in Mizar [1] some formulas [2] to calculate distance using triangulation.

Quasi-uniform Space

Roland Coghetto — 2016

Formalized Mathematics

In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Williams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasiuniform space, semi-uniform space and locally uniform space. We define the topology induced by a quasi-uniform space. Finally we formalize from the sets of the form ((X Ω) × X) ∪ (X × Ω), the Csaszar-Pervin quasi-uniform space induced by a topological space.

Uniform Space

Roland Coghetto — 2016

Formalized Mathematics

In this article, we formalize in Mizar [1] the notion of uniform space introduced by André Weil using the concepts of entourages [2]. We present some results between uniform space and pseudo metric space. We introduce the concepts of left-uniformity and right-uniformity of a topological group. Next, we define the concept of the partition topology. Following the Vlach’s works [11, 10], we define the semi-uniform space induced by a tolerance and the uniform space induced by an equivalence relation....

Cousin’s Lemma

Roland Coghetto — 2016

Formalized Mathematics

We formalize, in two different ways, that “the n-dimensional Euclidean metric space is a complete metric space” (version 1. with the results obtained in [13], [26], [25] and version 2., the results obtained in [13], [14], (registrations) [24]). With the Cantor’s theorem - in complete metric space (proof by Karol Pąk in [22]), we formalize “The Nested Intervals Theorem in 1-dimensional Euclidean metric space”. Pierre Cousin’s proof in 1892 [18] the lemma, published in 1895 [9] states that: “Soit,...

Double Sequences and Iterated Limits in Regular Space

Roland Coghetto — 2016

Formalized Mathematics

First, we define in Mizar [5], the Cartesian product of two filters bases and the Cartesian product of two filters. After comparing the product of two Fréchet filters on ℕ (F1) with the Fréchet filter on ℕ × ℕ (F2), we compare limF₁ and limF₂ for all double sequences in a non empty topological space. Endou, Okazaki and Shidama formalized in [14] the “convergence in Pringsheim’s sense” for double sequence of real numbers. We show some basic correspondences between the p-convergence and the filter...

Page 1 Next

Download Results (CSV)