The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider an energy-functional describing rotating superfluids at a rotating velocity , and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical above which energy-minimizers have vortices, evaluations of the minimal energy as a function of , and the derivation of a limiting free-boundary problem.
On étudie la fonctionnelle d’énergie de Ginzburg-Landau
qui modélise les supraconducteurs cylindriques soumis à un champ magnétique extérieur , dans l’asymptotique . On trouve et on décrit des branches de solutions stables des équations associées. On a une estimation sur la valeur critique de correspondant à une «transition de phase» où des vortex (c.à.d. zéros de ) deviennent énergétiquement favorables. On obtient également dans le cas d’un disque, que pour comme...
Systems with Coulomb and logarithmic interactions arise in various settings: an instance is the classical Coulomb gas which in some cases happens to be a random matrix ensemble, another is vortices in the Ginzburg-Landau model of superconductivity, where one observes in certain regimes the emergence of densely packed point vortices forming perfect triangular lattice patterns named Abrikosov lattices, a third is the study of Fekete points which arise in approximation theory. In this review, we describe...
On décrit ici un travail en collaboration avec Etienne Sandier, de l’Université Paris-Est.
We study vortices for solutions of the perturbed Ginzburg–Landau equations where is estimated in . We prove upper bounds for the Ginzburg–Landau energy in terms of , and obtain lower bounds for in terms of the vortices
when these form “unbalanced clusters” where .
These results will serve in Part II of this paper to provide estimates on the energy-dissipation rates for solutions of the Ginzburg–Landau heat flow, which allow one to study various phenomena
occurring in this flow, including...
We deduce from the first part of this paper [S1] estimates on the energy-dissipation rates for solutions of the Ginzburg–Landau heat flow, which allow us to study various phenomena occurring in this flow, including vortex collisions; they allow in particular extending the dynamical law of vortices past collision times.
We consider an energy-functional describing rotating superfluids at a
rotating velocity , and prove similar results as for the
Ginzburg-Landau functional of superconductivity: mainly the existence
of branches of solutions with vortices, the existence of a critical
above which energy-minimizers have vortices, evaluations
of the minimal energy as a function of , and the derivation of a limiting free-boundary problem.
We study a two-dimensional model for micromagnetics, which consists in an energy functional over -valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....
We study a two-dimensional model for micromagnetics, which consists in an energy functional over
-valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the...
Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.
Critical points of a variant of the Ambrosio-Tortorelli functional,
for which non-zero Dirichlet boundary conditions replace the
fidelity term, are investigated. They are shown to converge to
particular critical points of the corresponding variant of the
Mumford-Shah functional; those exhibit many symmetries. That
Dirichlet variant is the natural functional when addressing a
problem of brittle fracture in an elastic material.
Download Results (CSV)