The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 14 of 14

Showing per page

Order by Relevance | Title | Year of publication

On a model of rotating superfluids

Sylvia Serfaty — 2001

ESAIM: Control, Optimisation and Calculus of Variations

We consider an energy-functional describing rotating superfluids at a rotating velocity ω , and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical ω above which energy-minimizers have vortices, evaluations of the minimal energy as a function of ω , and the derivation of a limiting free-boundary problem.

Sur l'équation de Ginzburg-Landau avec champ magnétique

Sylvia Serfaty — 1998

Journées équations aux dérivées partielles

On étudie la fonctionnelle d’énergie de Ginzburg-Landau J ( u , A ) = 1 2 Ω | A u | 2 + | h - h e x | 2 + κ 2 2 ( 1 - | u | 2 ) 2 , qui modélise les supraconducteurs cylindriques soumis à un champ magnétique extérieur h e x , dans l’asymptotique κ . On trouve et on décrit des branches de solutions stables des équations associées. On a une estimation sur la valeur critique H c 1 ( κ ) de h e x correspondant à une «transition de phase» où des vortex (c.à.d. zéros de u ) deviennent énergétiquement favorables. On obtient également dans le cas d’un disque, que pour h e x H c 1 comme...

Systems with Coulomb interactions

Sylvia Serfaty — 2014

Journées Équations aux dérivées partielles

Systems with Coulomb and logarithmic interactions arise in various settings: an instance is the classical Coulomb gas which in some cases happens to be a random matrix ensemble, another is vortices in the Ginzburg-Landau model of superconductivity, where one observes in certain regimes the emergence of densely packed point vortices forming perfect triangular lattice patterns named Abrikosov lattices, a third is the study of Fekete points which arise in approximation theory. In this review, we describe...

Vortex collisions and energy-dissipation rates in the Ginzburg–Landau heat flow. Part I: Study of the perturbed Ginzburg–Landau equation

Sylvia Serfaty — 2007

Journal of the European Mathematical Society

We study vortices for solutions of the perturbed Ginzburg–Landau equations Δ u + ( u / ε 2 ) ( 1 | u | 2 ) = f ε where f ε is estimated in L 2 . We prove upper bounds for the Ginzburg–Landau energy in terms of f ε L 2 , and obtain lower bounds for f ε L 2 in terms of the vortices when these form “unbalanced clusters” where i d i 2 ( i d i ) 2 . These results will serve in Part II of this paper to provide estimates on the energy-dissipation rates for solutions of the Ginzburg–Landau heat flow, which allow one to study various phenomena occurring in this flow, including...

On a model of rotating superfluids

Sylvia Serfaty — 2010

ESAIM: Control, Optimisation and Calculus of Variations

We consider an energy-functional describing rotating superfluids at a rotating velocity , and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical above which energy-minimizers have vortices, evaluations of the minimal energy as a function of , and the derivation of a limiting free-boundary problem.

Néel and Cross-Tie wall energies for planar micromagnetic configurations

François AlougesTristan RivièreSylvia Serfaty — 2002

ESAIM: Control, Optimisation and Calculus of Variations

We study a two-dimensional model for micromagnetics, which consists in an energy functional over S 2 -valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....

Néel and Cross-Tie Wall Energies for Planar Micromagnetic Configurations

François AlougesTristan RivièreSylvia Serfaty — 2010

ESAIM: Control, Optimisation and Calculus of Variations


We study a two-dimensional model for micromagnetics, which consists in an energy functional over -valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the...

Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case

Gilles A. FrancfortNam Q. LeSylvia Serfaty — 2009

ESAIM: Control, Optimisation and Calculus of Variations

Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.

Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case

Gilles A. FrancfortNam Q. LeSylvia Serfaty — 2008

ESAIM: Control, Optimisation and Calculus of Variations

Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.

Page 1

Download Results (CSV)