We consider an energy-functional describing rotating superfluids at a rotating velocity , and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical above which energy-minimizers have vortices, evaluations of the minimal energy as a function of , and the derivation of a limiting free-boundary problem.
On étudie la fonctionnelle d’énergie de Ginzburg-Landau
qui modélise les supraconducteurs cylindriques soumis à un champ magnétique extérieur , dans l’asymptotique . On trouve et on décrit des branches de solutions stables des équations associées. On a une estimation sur la valeur critique de correspondant à une «transition de phase» où des vortex (c.à.d. zéros de ) deviennent énergétiquement favorables. On obtient également dans le cas d’un disque, que pour comme...
Systems with Coulomb and logarithmic interactions arise in various settings: an instance is the classical Coulomb gas which in some cases happens to be a random matrix ensemble, another is vortices in the Ginzburg-Landau model of superconductivity, where one observes in certain regimes the emergence of densely packed point vortices forming perfect triangular lattice patterns named Abrikosov lattices, a third is the study of Fekete points which arise in approximation theory. In this review, we describe...
On décrit ici un travail en collaboration avec Etienne Sandier, de l’Université Paris-Est.
We study vortices for solutions of the perturbed Ginzburg–Landau equations where is estimated in . We prove upper bounds for the Ginzburg–Landau energy in terms of , and obtain lower bounds for in terms of the vortices
when these form “unbalanced clusters” where .
These results will serve in Part II of this paper to provide estimates on the energy-dissipation rates for solutions of the Ginzburg–Landau heat flow, which allow one to study various phenomena
occurring in this flow, including...
We deduce from the first part of this paper [S1] estimates on the energy-dissipation rates for solutions of the Ginzburg–Landau heat flow, which allow us to study various phenomena occurring in this flow, including vortex collisions; they allow in particular extending the dynamical law of vortices past collision times.
We consider an energy-functional describing rotating superfluids at a
rotating velocity , and prove similar results as for the
Ginzburg-Landau functional of superconductivity: mainly the existence
of branches of solutions with vortices, the existence of a critical
above which energy-minimizers have vortices, evaluations
of the minimal energy as a function of , and the derivation of a limiting free-boundary problem.
We study a two-dimensional model for micromagnetics, which consists in an energy functional over -valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....
We study a two-dimensional model for micromagnetics, which consists in an energy functional over
-valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the...
Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.
Critical points of a variant of the Ambrosio-Tortorelli functional,
for which non-zero Dirichlet boundary conditions replace the
fidelity term, are investigated. They are shown to converge to
particular critical points of the corresponding variant of the
Mumford-Shah functional; those exhibit many symmetries. That
Dirichlet variant is the natural functional when addressing a
problem of brittle fracture in an elastic material.
Download Results (CSV)