Non-existence of wave operators for Stark effect Hamiltonians.
Small data scattering for nonlinear Schrödinger equations (NLS), nonlinear wave equations (NLW), nonlinear Klein-Gordon equations (NLKG) with power type nonlinearities is studied in the scheme of Sobolev spaces on the whole space with order . The assumptions on the nonlinearities are described in terms of power behavior at zero and at infinity such as for NLS and NLKG, and for NLW.
In this paper we study the Cauchy problem for the nonlinear Dirac equation in the Sobolev space Hs. We prove the existence and uniqueness of global solutions for small data in Hs with s > 1...
Page 1