The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

Existence of positive solutions for a fractional boundary value problem with lower-order fractional derivative dependence on the half-line

Amina BoucennaToufik Moussaoui — 2014

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The aim of this paper is to study the existence of solutions to a boundary value problem associated to a nonlinear fractional differential equation where the nonlinear term depends on a fractional derivative of lower order posed on the half-line. An appropriate compactness criterion and suitable Banach spaces are used and so a fixed point theorem is applied to obtain fixed points which are solutions of our problem.

Existence Results for a Fractional Boundary Value Problem via Critical Point Theory

A. BoucennaToufik Moussaoui — 2015

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper, we consider the following boundary value problem D T - α ( D 0 + α ( D T - α ( D 0 + α u ( t ) ) ) ) = f ( t , u ( t ) ) , t [ 0 , T ] , u ( 0 ) = u ( T ) = 0 D T - α ( D 0 + α u ( 0 ) ) = D T - α ( D 0 + α u ( T ) ) = 0 , where 0 < α 1 and f : [ 0 , T ] × is a continuous function, D 0 + α , D T - α are respectively the left and right fractional Riemann–Liouville derivatives and we prove the existence of at least one solution for this problem.

Existence and multiplicity of solutions for a fractional p -Laplacian problem of Kirchhoff type via Krasnoselskii’s genus

Ghania BenhamidaToufik Moussaoui — 2018

Mathematica Bohemica

We use the genus theory to prove the existence and multiplicity of solutions for the fractional p -Kirchhoff problem - M Q | u ( x ) - u ( y ) | p | x - y | N + p s d x d y p - 1 ( - Δ ) p s u = λ h ( x , u ) in Ω , u = 0 on N Ω , where Ω is an open bounded smooth domain of N , p > 1 , N > p s with s ( 0 , 1 ) fixed, Q = 2 N ( C Ω × C Ω ) , λ > 0 is a numerical parameter, M and h are continuous functions.

Existence and multiplicity of solutions for a p ( x ) -Kirchhoff type problem via variational techniques

A. MokhtariToufik MoussaouiD. O’Regan — 2015

Archivum Mathematicum

This paper discusses the existence and multiplicity of solutions for a class of p ( x ) -Kirchhoff type problems with Dirichlet boundary data of the following form - a + b Ω 1 p ( x ) | u | p ( x ) d x div ( | u | p ( x ) - 2 u ) = f ( x , u ) , i n Ω u = 0 o n Ω , where Ω is a smooth open subset of N and p C ( Ω ¯ ) with N < p - = inf x Ω p ( x ) p + = sup x Ω p ( x ) < + , a , b are positive constants and f : Ω ¯ × is a continuous function. The proof is based on critical point theory and variable exponent Sobolev space theory.

Page 1

Download Results (CSV)