We prove the existence of a unique solution for a free boundary problem relative to the stationary flow between two water reservoirs of different levels separated by a dam of a nomhomogeneous porous medium.
Questo articolo è una breve introduzione alla matematica non-archimedea. Nella prima parte passiamo in rassegna alcuni aspetti storici relativi alla critica dell'assioma di Archimede. Nella seconda parte ci proponiamo di mostrare la maggiore adeguatezza del punto di vista non archimedeo nell'analizzare la nozione di continuo euclideo.
We prove the existence of rotating solitary waves (vortices) for the nonlinear Klein-Gordon equation with nonnegative potential, by finding nonnegative cylindrical solutions to the standing equation where , , and . The nonnegativity of the potential makes the equation suitable for physical models and guarantees the wellposedness of the corresponding Cauchy problem, but it prevents the use of standard arguments in providing the functional associated to with bounded Palais-Smale sequences....
In this Note we deal with the problem of the existence of geodesies joining two given points of certain non-complete Lorentz manifolds, of which the Schwarzschild spacetime is the simplest physical example.
We prove the existence of cylindrical solutions to the semilinear elliptic problem , , , where , and has a double-power behaviour, subcritical at infinity
and supercritical near the origin. This result also implies the existence of solitary waves with nonvanishing angular momentum for nonlinear Schr¨odinger and Klein–Gordon equations.
Download Results (CSV)