Displaying similar documents to “Hochschild cohomology of piecewise hereditary algebras”

Tame triangular matrix algebras

Zbigniew Leszczyński, Andrzej Skowroński (2000)

Colloquium Mathematicae

Similarity:

We describe all finite-dimensional algebras A over an algebraically closed field for which the algebra T 2 ( A ) of 2×2 upper triangular matrices over A is of tame representation type. Moreover, the algebras A for which T 2 ( A ) is of polynomial growth (respectively, domestic, of finite representation type) are also characterized.

Finite mutation classes of coloured quivers

Hermund André Torkildsen (2011)

Colloquium Mathematicae

Similarity:

We show that the mutation class of a coloured quiver arising from an m-cluster tilting object associated with a finite-dimensional hereditary algebra H, is finite if and only if H is of finite or tame representation type, or it has at most two simples. This generalizes a result known for cluster categories.

Iterated coil enlargements of algebras

Bertha Tomé (1995)

Fundamenta Mathematicae

Similarity:

Let Λ be a finite-dimensional, basic and connected algebra over an algebraically closed field, and mod Λ be the category of finitely generated right Λ-modules. We say that Λ has acceptable projectives if the indecomposable projective Λ-modules lie either in a preprojective component without injective modules or in a standard coil, and the standard coils containing projectives are ordered. We prove that for such an algebra Λ the following conditions are equivalent: (a) Λ is tame, (b)...

On wings of the Auslander-Reiten quivers of selfinjective algebras

Marta Kwiecień, Andrzej Skowroński (2005)

Colloquium Mathematicae

Similarity:

We give necessary and sufficient conditions for a wing of an Auslander-Reiten quiver of a selfinjective algebra to be the wing of the radical of an indecomposable projective module. Moreover, a characterization of indecomposable Nakayama algebras of Loewy length ≥ 3 is obtained.