Sur la décomposition des ensembles de points en parties homogènes
Wacław Sierpiński (1920)
Fundamenta Mathematicae
Similarity:
Cette note est dévouée à l'étude de la decomposition d'un ensamble dense en soi en parties homogènes.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Wacław Sierpiński (1920)
Fundamenta Mathematicae
Similarity:
Cette note est dévouée à l'étude de la decomposition d'un ensamble dense en soi en parties homogènes.
Wacław Sierpiński (1920)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de démontrer le theoreme suivant: Pour qu'en continu C (situé dans un espace euclidien à m dimensions) soit une courbe jordanienne, il faut et il suffit que, pour tout ϵ > 0, il soit une somme d'un nombre fini de continus de diamètre < ϵ.
Stefan Mazurkiewicz, Wacław Sierpiński (1920)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de déterminer la puissance de deux classes de types topologiques dénombrables: de celle des types dénombrables fermés et de celle des types clairsemés. Mazurkiewicz et Sierpiński démontrent que la puissance de la première de ces classes est א_1 et que la seconde classe est de puissance du continu.
Wacław Sierpiński (1920)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de démontrer sans l'aide des nombres transfinis et sans utiliser la théorie des ensembles mesurables B (ensembles de Borel) le suivant théorème de Baire: Toute fonction représentable analytiquement est ponctuellement discontinue sur tout ensemble parfait, quand on néglige les ensembles de I -e catégorie par rapport à cet ensemble.
Wacław Sierpiński (1920)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de démontrer que pour qu'une fonction de deux variables x, y soit de classe α = 0 dans le plan (x,y), il suffit qu'elle soit de classe 0 de Baire sur toute droite x=const. et sur toute courbe (continue) y=f(x). En plus si cette propriété était exacte pour α=2, on aurait l'inégalité 2^{א_0} > א_1.
Stefan Mazurkiewicz (1920)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de démontrer la solution de problème suivant: L'espace R^q où q>1, contient-il des ensembles ponctiformes qui ne sont homéomorphes à aucun ensemble linéaire?
Stefan Mazurkiewicz (1920)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de démontrer la solution du problème suivant: A désignant un continu indécomposable, peut-on déterminer sur A deux points, de manière que A soit un continu irréductible entre ces points?
Wacław Sierpiński (1920)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de démontrer que la base de Hamel peut être mesurable au sens de Lebesgue.
Wacław Sierpiński (1920)
Fundamenta Mathematicae
Similarity:
Définition: Nous disons qu'une suite transfinie (du type Ω) de fonctions de variable réelle f_1(x),f_2(x),...,f_ω(x),f_{ω + 1}(x),...,f_ξ(x),... (ξ<Ω) (1) a pour limite la fonction f(x), si, pour tout x réel, la suite des nombres (1) a pour limite le nombre f(x). Le but de cette note est de démontrer le théorème suivant: Si la suite (1) est une suite convergente de fonction continues, tous ses termes sont égaux à partir d'une certaine place.
Wacław Sierpiński (1924)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de donner un exemple effectif d'une fonction non représentable analytiquement sans faire appel aux nombres transfinis et à la théorie des ensembles (A) et sans utiliser les opérations d'addition et de multiplication à partir d'une infinité non dénombrable d'ensembles ni dans la construction de l'exemple ni dans la démonstration.
Wacław Sierpiński (1920)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de démontrer le théorème suivant: Toute fonction mesurable f(x) qui satisfait pour tous les nombres réels x et y à l'équation fonctionnelle f(x+y)=f(x)+f(y) est de la forme Ax où A est une constante.
Hugo Steinhaus (1920)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de démontrer le théorème suivant: Tout ensemble linéaire de mesure positive contient deux points distincts a et b de distance rationnelle et de donner quelques généralisations faciles du théorème.
Wacław Sierpiński (1920)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de démontrer le théorème suivant: Il existe un ensemble plan qui est de mesure nulle sur toute droite, mais qui n'est pas mesurable superficiellement.
Stefan Mazurkiewicz, Wacław Sierpiński (1924)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de montrer la solution au problème suivante de Banach: Problème: P étant un ensemble plan fermé, ou, plus généralement, mesurable (B), quel est l'ensemble N(P) de tous les nombres réels b, tels que la droite y=b rencontre l'ensemble P en une infinité non dénombrable de points ?
Casimir Kuratowski (1920)
Fundamenta Mathematicae
Similarity:
Le but de cette note est d'introduire une définition d'un ensemble fini et de démontrer son équivalence avec la définition donnée par Wacław Sierpiński.