Displaying similar documents to “Sur les fonctions développables en séries absolument convergentes de fonctions continues”

Démonstration d'un théorème sur les fonctions de première classe

Wacław Sierpiński (1921)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer (sans l'intervention du transfini) le théorème suivant: Pour toute fonction bornée de première classe f(x) et pour tout nombre ϵ positif donné il existe une fonction qui est une différence de deux fonctions semi-continues supérieurement et qui est égale à f(x) à moins de ϵ près.

Sur les séries itérées des fonctions continues

Stefan Kempisty (1921)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer (sans l'usage de nombres transfinis), qu'une fonction bornée ou non qui est limite de fonctions continues peut être représentée par une série absolument convergente des séries absolument convergentes de fonctions continues.

Sur l'approximation des fonctions de première classe

Stefan Kempisty (1921)

Fundamenta Mathematicae

Similarity:

Mazurkiewicz a établi une propriété remarquable de fonctions de première classe. Il a montré, en se servant de nombres transfinis, qu'étant donnée une fonction f(x) bornée de classe 1 de Baire et un nombre positif ϵ, on peut construire une fonction φ(x) qui est une différence de deux fonctions semi-continues supérieurement et qui vérifie l'inégalité |f(x)-φ(x)| ≤ ϵ Or un théorème analogue a été énoncé par de la Vallée Poussin: Soit f une fonction bornée de classe 1: on peut quel que...

Sur deux catégories remarquables de fonctions de variable réelle

H. Looman (1924)

Fundamenta Mathematicae

Similarity:

Monsieur Denjoy a défini deux catégories de fonction de variable réelle, à savoir les fonctions approximativement continues et à prépondérance de continuité d'une part, les dérivées approximatives et les nombres dérivés prépondérants (de fonctions continues) d'autre part, dont il a démontré, en appliquant la partie réciproque du théorème de Baire, qu'elles sont limites de fonction continues. Le but de cette note est de démontrer comment on peut former des suites de fonctions continues,...

Sur une propriété des fonctions semi-continues

Wacław Sierpiński (1927)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer un théorème sur les fonctions semi-continues, dont un corollaire immédiat peut être regarde comme une généralisation du théorème bien connu d'après lequel toute fonction continue dans un intervalle fini est uniformément continue dans cet intervalle. Théorème: ϕ(x) etant une fonction semi-continue supérierurement dans un intervalle fini (a,b) et φ(x) etant une fonction semi-continue intérieurement dans (a,b), telles que ϕ(x) < φ(x) pour a ≤ x ≤...

Sur les fonctions de classe 1

Stefan Mazurkiewicz (1921)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de trouver la solution de problème suivant: Problème: Peut on représenter toute fonction de classe 1 par une différence des deux fonctions semi-continues supérieurement? et de démontrer le théorème general: Théorème: Prémisse: f(x) est une fonction bornée de classe 1 dans un intervalle I. Thèse: Pour tout nombre ϵ > 0 il existe deux fonctions G_1(x), G_2(x) semicontinues supérieurement dans I et telles que: |f(x)-[G_1(x)-G_2(x)]| ≤ ϵ x ⊂ I.