Displaying similar documents to “On the representation of functions by orthogonal series in weighted L p spaces”

An almost-sure estimate for the mean of generalized Q -multiplicative functions of modulus 1

Jean-Loup Mauclaire (2000)

Journal de théorie des nombres de Bordeaux

Similarity:

Let Q = ( Q k ) k 0 , Q 0 = 1 , Q k + 1 = q k Q k , q k 2 , be a Cantor scale, 𝐙 Q the compact projective limit group of the groups 𝐙 / Q k 𝐙 , identified to 0 j k - 1 𝐙 / q j 𝐙 , and let μ be its normalized Haar measure. To an element x = { a 0 , a 1 , a 2 , } , 0 a k q k + 1 - 1 , of 𝐙 Q we associate the sequence of integral valued random variables x k = 0 j k a j Q j . The main result of this article is that, given a complex 𝐐 -multiplicative function g of modulus 1 , we have lim x k x ( 1 x k n x k - 1 g ( n ) - 0 j k 1 q j 0 a q j g ( a Q j ) ) = 0 μ -a.e .

Algebraic independence over p

Peter Bundschuh, Kumiko Nishioka (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let f ( x ) be a power series n 1 ζ ( n ) x e ( n ) , where ( e ( n ) ) is a strictly increasing linear recurrence sequence of non-negative integers, and ( ζ ( n ) ) a sequence of roots of unity in ¯ p satisfying an appropriate technical condition. Then we are mainly interested in characterizing the algebraic independence over p of the elements f ( α 1 ) , ... , f ( α t ) from p in terms of the distinct α 1 , ... , α t p satisfying 0 < | α τ | p < 1 for τ = 1 , ... , t . A striking application of our basic result says that, in the case e ( n ) = n , the set { f ( α ) | α p , 0 < | α | p < 1 } is algebraically independent over p if...

Partial differential operators depending analytically on a parameter

Frank Mantlik (1991)

Annales de l'institut Fourier

Similarity:

Let P ( λ , D ) = | α | m a α ( λ ) D α be a differential operator with constant coefficients a α depending analytically on a parameter λ . Assume that the family { P( λ ,D) } is of constant strength. We investigate the equation P ( λ , D ) 𝔣 λ g λ where 𝔤 λ is a given analytic function of λ with values in some space of distributions and the solution 𝔣 λ is required to depend analytically on λ , too. As a special case we obtain a regular fundamental solution of P( λ ,D) which depends analytically on λ . This result answers a question of L. Hörmander. ...

On some singular integral operatorsclose to the Hilbert transform

T. Godoy, L. Saal, M. Urciuolo (1997)

Colloquium Mathematicae

Similarity:

Let m: ℝ → ℝ be a function of bounded variation. We prove the L p ( ) -boundedness, 1 < p < ∞, of the one-dimensional integral operator defined by T m f ( x ) = p . v . k ( x - y ) m ( x + y ) f ( y ) d y where k ( x ) = j 2 j φ j ( 2 j x ) for a family of functions φ j j satisfying conditions (1.1)-(1.3) given below.

A lifting theorem for locally convex subspaces of L 0

R. Faber (1995)

Studia Mathematica

Similarity:

We prove that for every closed locally convex subspace E of L 0 and for any continuous linear operator T from L 0 to L 0 / E there is a continuous linear operator S from L 0 to L 0 such that T = QS where Q is the quotient map from L 0 to L 0 / E .

Tauberian theorems for Cesàro summable double sequences

Ferenc Móricz (1994)

Studia Mathematica

Similarity:

( s j k : j , k = 0 , 1 , . . . ) be a double sequence of real numbers which is summable (C,1,1) to a finite limit. We give necessary and sufficient conditions under which ( s j k ) converges in Pringsheim’s sense. These conditions are satisfied if ( s j k ) is slowly decreasing in certain senses defined in this paper. Among other things we deduce the following Tauberian theorem of Landau and Hardy type: If ( s j k ) is summable (C,1,1) to a finite limit and there exist constants n 1 > 0 and H such that j k ( s j k - s j - 1 , k - s j - 1 , k + s j - 1 , k - 1 ) - H , j ( s j k - s j - 1 , k ) - H and k ( s j k - s j , k - 1 ) - H whenever j , k > n 1 , then...

Estimates of Fourier transforms in Sobolev spaces

V. Kolyada (1997)

Studia Mathematica

Similarity:

We investigate the Fourier transforms of functions in the Sobolev spaces W 1 r 1 , . . . , r n . It is proved that for any function f W 1 r 1 , . . . , r n the Fourier transform f̂ belongs to the Lorentz space L n / r , 1 , where r = n ( j = 1 n 1 / r j ) - 1 n . Furthermore, we derive from this result that for any mixed derivative D s f ( f C 0 , s = ( s 1 , . . . , s n ) ) the weighted norm ( D s f ) L 1 ( w ) ( w ( ξ ) = | ξ | - n ) can be estimated by the sum of L 1 -norms of all pure derivatives of the same order. This gives an answer to a question posed by A. Pełczyński and M. Wojciechowski.

Geometric study of the beta-integers for a Perron number and mathematical quasicrystals

Jean-Pierre Gazeau, Jean-Louis Verger-Gaugry (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We investigate in a geometrical way the point sets of     obtained by the   β -numeration that are the   β -integers   β [ β ]   where   β   is a Perron number. We show that there exist two canonical cut-and-project schemes associated with the   β -numeration, allowing to lift up the   β -integers to some points of the lattice   m   ( m =   degree of   β ) lying about the dominant eigenspace of the companion matrix of   β  . When   β   is in particular a Pisot number, this framework gives another proof of the fact...