The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the representation of functions by orthogonal series in weighted L p spaces”

An almost-sure estimate for the mean of generalized Q -multiplicative functions of modulus 1

Jean-Loup Mauclaire (2000)

Journal de théorie des nombres de Bordeaux

Similarity:

Let Q = ( Q k ) k 0 , Q 0 = 1 , Q k + 1 = q k Q k , q k 2 , be a Cantor scale, 𝐙 Q the compact projective limit group of the groups 𝐙 / Q k 𝐙 , identified to 0 j k - 1 𝐙 / q j 𝐙 , and let μ be its normalized Haar measure. To an element x = { a 0 , a 1 , a 2 , } , 0 a k q k + 1 - 1 , of 𝐙 Q we associate the sequence of integral valued random variables x k = 0 j k a j Q j . The main result of this article is that, given a complex 𝐐 -multiplicative function g of modulus 1 , we have lim x k x ( 1 x k n x k - 1 g ( n ) - 0 j k 1 q j 0 a q j g ( a Q j ) ) = 0 μ -a.e .

Algebraic independence over p

Peter Bundschuh, Kumiko Nishioka (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let f ( x ) be a power series n 1 ζ ( n ) x e ( n ) , where ( e ( n ) ) is a strictly increasing linear recurrence sequence of non-negative integers, and ( ζ ( n ) ) a sequence of roots of unity in ¯ p satisfying an appropriate technical condition. Then we are mainly interested in characterizing the algebraic independence over p of the elements f ( α 1 ) , ... , f ( α t ) from p in terms of the distinct α 1 , ... , α t p satisfying 0 < | α τ | p < 1 for τ = 1 , ... , t . A striking application of our basic result says that, in the case e ( n ) = n , the set { f ( α ) | α p , 0 < | α | p < 1 } is algebraically independent over p if...

Partial differential operators depending analytically on a parameter

Frank Mantlik (1991)

Annales de l'institut Fourier

Similarity:

Let P ( λ , D ) = | α | m a α ( λ ) D α be a differential operator with constant coefficients a α depending analytically on a parameter λ . Assume that the family { P( λ ,D) } is of constant strength. We investigate the equation P ( λ , D ) 𝔣 λ g λ where 𝔤 λ is a given analytic function of λ with values in some space of distributions and the solution 𝔣 λ is required to depend analytically on λ , too. As a special case we obtain a regular fundamental solution of P( λ ,D) which depends analytically on λ . This result answers a question of L. Hörmander. ...

On some singular integral operatorsclose to the Hilbert transform

T. Godoy, L. Saal, M. Urciuolo (1997)

Colloquium Mathematicae

Similarity:

Let m: ℝ → ℝ be a function of bounded variation. We prove the L p ( ) -boundedness, 1 < p < ∞, of the one-dimensional integral operator defined by T m f ( x ) = p . v . k ( x - y ) m ( x + y ) f ( y ) d y where k ( x ) = j 2 j φ j ( 2 j x ) for a family of functions φ j j satisfying conditions (1.1)-(1.3) given below.

A lifting theorem for locally convex subspaces of L 0

R. Faber (1995)

Studia Mathematica

Similarity:

We prove that for every closed locally convex subspace E of L 0 and for any continuous linear operator T from L 0 to L 0 / E there is a continuous linear operator S from L 0 to L 0 such that T = QS where Q is the quotient map from L 0 to L 0 / E .

Tauberian theorems for Cesàro summable double sequences

Ferenc Móricz (1994)

Studia Mathematica

Similarity:

( s j k : j , k = 0 , 1 , . . . ) be a double sequence of real numbers which is summable (C,1,1) to a finite limit. We give necessary and sufficient conditions under which ( s j k ) converges in Pringsheim’s sense. These conditions are satisfied if ( s j k ) is slowly decreasing in certain senses defined in this paper. Among other things we deduce the following Tauberian theorem of Landau and Hardy type: If ( s j k ) is summable (C,1,1) to a finite limit and there exist constants n 1 > 0 and H such that j k ( s j k - s j - 1 , k - s j - 1 , k + s j - 1 , k - 1 ) - H , j ( s j k - s j - 1 , k ) - H and k ( s j k - s j , k - 1 ) - H whenever j , k > n 1 , then...

Estimates of Fourier transforms in Sobolev spaces

V. Kolyada (1997)

Studia Mathematica

Similarity:

We investigate the Fourier transforms of functions in the Sobolev spaces W 1 r 1 , . . . , r n . It is proved that for any function f W 1 r 1 , . . . , r n the Fourier transform f̂ belongs to the Lorentz space L n / r , 1 , where r = n ( j = 1 n 1 / r j ) - 1 n . Furthermore, we derive from this result that for any mixed derivative D s f ( f C 0 , s = ( s 1 , . . . , s n ) ) the weighted norm ( D s f ) L 1 ( w ) ( w ( ξ ) = | ξ | - n ) can be estimated by the sum of L 1 -norms of all pure derivatives of the same order. This gives an answer to a question posed by A. Pełczyński and M. Wojciechowski.

Geometric study of the beta-integers for a Perron number and mathematical quasicrystals

Jean-Pierre Gazeau, Jean-Louis Verger-Gaugry (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We investigate in a geometrical way the point sets of     obtained by the   β -numeration that are the   β -integers   β [ β ]   where   β   is a Perron number. We show that there exist two canonical cut-and-project schemes associated with the   β -numeration, allowing to lift up the   β -integers to some points of the lattice   m   ( m =   degree of   β ) lying about the dominant eigenspace of the companion matrix of   β  . When   β   is in particular a Pisot number, this framework gives another proof of the fact...