Displaying similar documents to “Genres de Todd et valeurs aux entiers des dérivées de fonctions L

La conjecture de Green générique

Arnaud Beauville (2003-2004)

Séminaire Bourbaki

Similarity:

Une courbe C projective et lisse de genre g , non hyperelliptique, admet un plongement canonique dans un espace projectif g - 1 . Un résultat classique affirme que l’idéal gradué I C des équations de C dans g - 1 est engendré par ses éléments de degré 2 , sauf si C admet certains systèmes linéaires très particuliers. Mark Green en a proposé il y a vingt ans une vaste généralisation, qui décrit la résolution minimale de I C en fonction de l’existence de systèmes linéaires spéciaux sur C . Claire Voisin...

Correspondances de Hecke, action de Galois et la conjecture d’André–Oort

Rutger Noot (2004-2005)

Séminaire Bourbaki

Similarity:

Soient M une variété de Shimura, Z M fermée et irréductible et S Z ( ) un ensemble Zariski dense de points spéciaux. Selon la conjecture d’André–Oort, Z est une sous-variété de type Hodge. Par exemple, si M est un espace de modules de variétés abéliennes, S est un ensemble de points correspondant à des variétés de type CM et Z doit paramétrer des variétés abéliennes munies de certaines classes de Hodge. En utilisant les actions de l’algèbre de Hecke et du groupe de Galois, Edixhoven et Yafaev...

Irrationalité de valeurs de zêta

Stéphane Fischler (2002-2003)

Séminaire Bourbaki

Similarity:

Les valeurs aux entiers pairs (strictement positifs) de la fonction ζ de Riemann sont transcendantes, car ce sont des multiples rationnels de puissances de π . En revanche, on sait très peu de choses sur la nature arithmétique des ζ ( 2 k + 1 ) , pour k 1 entier. Apéry a démontré en 1978 que ζ ( 3 ) est irrationnel. Rivoal a prouvé en 2000 qu’une infinité de ζ ( 2 k + 1 ) sont irrationnels, mais sans pouvoir en exhiber aucun autre que ζ ( 3 ) . Il existe plusieurs points de vue sur la preuve d’Apéry ; celui des séries hypergéométriques...

Classes de cohomologie positives dans les variétés kählériennes compactes

Olivier Debarre (2004-2005)

Séminaire Bourbaki

Similarity:

Étant donnée une variété kählérienne compacte X , on étudie dans l’espace vectoriel réel de cohomologie de Dolbeault H 1 , 1 ( X , 𝐑 ) H 2 ( X , 𝐑 ) le cône convexe des classes de Kähler ainsi que celui, plus grand, des classes de courants positifs fermés de type ( 1 , 1 ) . Lorsque X est projective, les traces de ces cônes sur l’espace de Néron–Severi NS ( X ) 𝐑 H 1 , 1 ( X , 𝐑 ) engendré par les classes entières sont respectivement le cône des classes de diviseurs amples et l’adhérence de celui des classes de diviseurs effectifs.

Obstructions au principe de Hasse et à l’approximation faible

Emmanuel Peyre (2003-2004)

Séminaire Bourbaki

Similarity:

Si un système d’équations polynomiales à coefficients entiers admet une solution dans 𝐐 n , il en admet sur tout complété p -adique ou réel de 𝐐 . La réciproque a été démontrée par Hasse pour les quadriques, mais elle est fausse en général. Une grande partie des contre-exemples connus peuvent être expliqués à l’aide de l’obstruction de Brauer-Manin, basée sur la théorie du corps de classe. Il est donc naturel de se demander si, pour certaines classes de variétés, cette obstruction est la...

Compactification de l’espace des modules des variétés abéliennes principalement polarisées

Michel Brion (2005-2006)

Séminaire Bourbaki

Similarity:

Les variétés abéliennes principalement polarisées admettent un espace des modules grossier qu’on sait compactifier de plusieurs façons (compactification de Satake, compactifications toroïdales). Cependant, le problème s’est posé de construire une compactification “modulaire”en termes d’objets géométriques qui permettent de décrire les points du bord. On souhaite aussi compactifier l’application de Torelli qui à chaque courbe algébrique, projective et lisse, associe sa jacobienne. L’exposé...

Le Bismutien

Gilles Lebeau (2004-2005)

Séminaire Équations aux dérivées partielles

Similarity:

Dans une série de travaux récents, Jean-Michel Bismut a construit un “laplacien hypoelliptique” agissant sur les formes différentielles sur le fibré cotangent Σ = T * X d’une variété riemannienne X . Dans cet exposé, nous présentons quelques propriétés analytiques de ce nouvel opérateur et explicitons le fait qu’il définit une déformation du laplacien de Hodge sur X .

Le Laplacien hypoelliptique

Jean-Michel Bismut (2003-2004)

Séminaire Équations aux dérivées partielles

Similarity:

On construit une nouvelle théorie de Hodge sur le fibré cotangent d’une variété Riemannienne X . Le Laplacien correspondant est un opérateur hypoelliptique d’ordre deux, qui est autoadjoint relativement à une forme Hermitienne de signature ( , ) . Cette théorie de Hodge interpole entre la théorie de Hodge habituelle sur X et le flot géodésique sur T * X .