Displaying similar documents to “Derived functors of lim and abelian ab3*- and Ab4*-categories with enough injectives”

Recollement of colimit categories and its applications

Ju Huang, QingHua Chen, Chunhuan Lai (2020)

Czechoslovak Mathematical Journal

Similarity:

We give an explicit recollement for a cocomplete abelian category and its colimit category. We obtain some applications on Leavitt path algebras, derived equivalences and K -groups.

Schur-Finite Motives and Trace Identities

Alessio Del Padrone, Carlo Mazza (2009)

Bollettino dell'Unione Matematica Italiana

Similarity:

We provide a sufficient condition that ensures the nilpotency of endomorphisms universally of trace zero of Schur-finite objects in a category of homological type, i.e., a -linear -category with a tensor functor to super vector spaces. We present some applications in the category of motives, where our result generalizes previous results about finite-dimensional objects, in particular by Kimura. We also present some facts which suggest that this might be the best generalization possible...

n -angulated quotient categories induced by mutation pairs

Zengqiang Lin (2015)

Czechoslovak Mathematical Journal

Similarity:

Geiss, Keller and Oppermann (2013) introduced the notion of n -angulated category, which is a “higher dimensional” analogue of triangulated category, and showed that certain ( n - 2 ) -cluster tilting subcategories of triangulated categories give rise to n -angulated categories. We define mutation pairs in n -angulated categories and prove that given such a mutation pair, the corresponding quotient category carries a natural n -angulated structure. This result generalizes a theorem of Iyama-Yoshino...

Gorenstein dimension of abelian categories arising from cluster tilting subcategories

Yu Liu, Panyue Zhou (2021)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒞 be a triangulated category and 𝒳 be a cluster tilting subcategory of 𝒞 . Koenig and Zhu showed that the quotient category 𝒞 / 𝒳 is Gorenstein of Gorenstein dimension at most one. But this is not always true when 𝒞 becomes an exact category. The notion of an extriangulated category was introduced by Nakaoka and Palu as a simultaneous generalization of exact categories and triangulated categories. Now let 𝒞 be an extriangulated category with enough projectives and enough injectives, and...

How to construct a Hovey triple from two cotorsion pairs

James Gillespie (2015)

Fundamenta Mathematicae

Similarity:

Let be an abelian category, or more generally a weakly idempotent complete exact category, and suppose we have two complete hereditary cotorsion pairs ( , ˜ ) and ( ˜ , ) in satisfying ˜ and ˜ = ˜ . We show how to construct a (necessarily unique) abelian model structure on with (resp. ˜ ) as the class of cofibrant (resp. trivially cofibrant) objects, and (resp. ˜ ) as the class of fibrant (resp. trivially fibrant) objects.

One-sided n -suspended categories

Jing He, Yonggang Hu, Panyue Zhou (2024)

Czechoslovak Mathematical Journal

Similarity:

For an integer n 3 , we introduce a simultaneous generalization of ( n - 2 ) -exact categories and n -angulated categories, referred to as one-sided n -suspended categories. Notably, one-sided n -angulated categories are specific instances of this structure. We establish a framework for transitioning from these generalized categories to their n -angulated counterparts. Additionally, we present a method for constructing n -angulated quotient categories from Frobenius n -prile categories. Our results unify...

The categories of presheaves containing any category of algebras

V. Trnková, J. Reiterman

Similarity:

ContentsIntroduction.................................................................................................................................................. 5I. Preliminaries........................................................................................................................................... 6II. Main theorem.......................................................................................................................................... 8III. The...

A note on model structures on arbitrary Frobenius categories

Zhi-wei Li (2017)

Czechoslovak Mathematical Journal

Similarity:

We show that there is a model structure in the sense of Quillen on an arbitrary Frobenius category such that the homotopy category of this model structure is equivalent to the stable category ̲ as triangulated categories. This seems to be well-accepted by experts but we were unable to find a complete proof for it in the literature. When is a weakly idempotent complete (i.e., every split monomorphism is an inflation) Frobenius category, the model structure we constructed is an exact...

On the structure of halfdiagonal-halfterminal-symmetric categories with diagonal inversions

Hans-Jürgen Vogel (2001)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

The category of all binary relations between arbitrary sets turns out to be a certain symmetric monoidal category Rel with an additional structure characterized by a family d = ( d A : A A A | A | R e l | ) of diagonal morphisms, a family t = ( t A : A I | A | R e l | ) of terminal morphisms, and a family = ( A : A A A | A | R e l | ) of diagonal inversions having certain properties. Using this properties in [11] was given a system of axioms which characterizes the abstract concept of a halfdiagonal-halfterminal-symmetric monoidal category with diagonal inversions (hdht∇s-category)....

Relative Auslander bijection in n -exangulated categories

Jian He, Jing He, Panyue Zhou (2023)

Czechoslovak Mathematical Journal

Similarity:

The aim of this article is to study the relative Auslander bijection in n -exangulated categories. More precisely, we introduce the notion of generalized Auslander-Reiten-Serre duality and exploit a bijection triangle, which involves the generalized Auslander-Reiten-Serre duality and the restricted Auslander bijection relative to the subfunctor. As an application, this result generalizes the work by Zhao in extriangulated categories.

Two results of n -exangulated categories

Jian He, Jing He, Panyue Zhou (2024)

Czechoslovak Mathematical Journal

Similarity:

M. Herschend, Y. Liu, H. Nakaoka introduced n -exangulated categories, which are a simultaneous generalization of n -exact categories and ( n + 2 ) -angulated categories. This paper consists of two results on n -exangulated categories: (1) we give an equivalent characterization of axiom (EA2); (2) we provide a new way to construct a closed subfunctor of an n -exangulated category.

Yetter-Drinfeld-Long bimodules are modules

Daowei Lu, Shuan Hong Wang (2017)

Czechoslovak Mathematical Journal

Similarity:

Let H be a finite-dimensional bialgebra. In this paper, we prove that the category ℒℛ ( H ) of Yetter-Drinfeld-Long bimodules, introduced by F. Panaite, F. Van Oystaeyen (2008), is isomorphic to the Yetter-Drinfeld category H H * H H * 𝒴𝒟 over the tensor product bialgebra H H * as monoidal categories. Moreover if H is a finite-dimensional Hopf algebra with bijective antipode, the isomorphism is braided. Finally, as an application of this category isomorphism, we give two results.

Colimit-dense subcategories

Jiří Adámek, Andrew D. Brooke-Taylor, Tim Campion, Leonid Positselski, Jiří Rosický (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Among cocomplete categories, the locally presentable ones can be defined as those with a strong generator consisting of presentable objects. Assuming Vopěnka’s Principle, we prove that a cocomplete category is locally presentable if and only if it has a colimit dense subcategory and a generator consisting of presentable objects. We further show that a 3 -element set is colimit-dense in 𝐒𝐞𝐭 op , and spaces of countable dimension are colimit-dense in 𝐕𝐞𝐜 op .

Base change for Picard-Vessiot closures

Andy R. Magid (2011)

Banach Center Publications

Similarity:

The differential automorphism group, over F, Π₁(F₁) of the Picard-Vessiot closure F₁ of a differential field F is a proalgebraic group over the field C F of constants of F, which is assumed to be algebraically closed of characteristic zero, and its category of C F modules is equivalent to the category of differential modules over F. We show how this group and the category equivalence behave under a differential extension E ⊃ F, where C E is also algebraically closed.

On a generalization of Abelian sequential groups

Saak S. Gabriyelyan (2013)

Fundamenta Mathematicae

Similarity:

Let (G,τ) be a Hausdorff Abelian topological group. It is called an s-group (resp. a bs-group) if there is a set S of sequences in G such that τ is the finest Hausdorff (resp. precompact) group topology on G in which every sequence of S converges to zero. Characterizations of Abelian s- and bs-groups are given. If (G,τ) is a maximally almost periodic (MAP) Abelian s-group, then its Pontryagin dual group ( G , τ ) is a dense -closed subgroup of the compact group ( G d ) , where G d is the group G with...

On n -exact categories

Said Manjra (2019)

Czechoslovak Mathematical Journal

Similarity:

An n -exact category is a pair consisting of an additive category and a class of sequences with n + 2 terms satisfying certain axioms. We introduce n -weakly idempotent complete categories. Then we prove that an additive n -weakly idempotent complete category together with the class 𝒞 n of all contractible sequences with n + 2 terms is an n -exact category. Some properties of the class 𝒞 n are also discussed.