Displaying similar documents to “Classes of hypergraphs with sum number one”

The sum number of d-partite complete hypergraphs

Hanns-Martin Teichert (1999)

Discussiones Mathematicae Graph Theory

Similarity:

A d-uniform hypergraph is a sum hypergraph iff there is a finite S ⊆ IN⁺ such that is isomorphic to the hypergraph d ( S ) = ( V , ) , where V = S and = v , . . . , v d : ( i j v i v j ) i = 1 d v i S . For an arbitrary d-uniform hypergraph the sum number σ = σ() is defined to be the minimum number of isolated vertices w , . . . , w σ V such that w , . . . , w σ is a sum hypergraph. In this paper, we prove σ ( n , . . . , n d d ) = 1 + i = 1 d ( n i - 1 ) + m i n 0 , 1 / 2 ( i = 1 d - 1 ( n i - 1 ) - n d ) , where n , . . . , n d d denotes the d-partite complete hypergraph; this generalizes the corresponding result of Hartsfield and Smyth [8] for complete bipartite graphs.

Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles

Donghan Zhang (2022)

Czechoslovak Mathematical Journal

Similarity:

Let G = ( V ( G ) , E ( G ) ) be a simple graph and E G ( v ) denote the set of edges incident with a vertex v . A neighbor sum distinguishing (NSD) total coloring φ of G is a proper total coloring of G such that z E G ( u ) { u } φ ( z ) z E G ( v ) { v } φ ( z ) for each edge u v E ( G ) . Pilśniak and Woźniak asserted in 2015 that each graph with maximum degree Δ admits an NSD total ( Δ + 3 ) -coloring. We prove that the list version of this conjecture holds for any IC-planar graph with Δ 11 but without 5 -cycles by applying the Combinatorial Nullstellensatz.

Generalized list colourings of graphs

Mieczysław Borowiecki, Ewa Drgas-Burchardt, Peter Mihók (1995)

Discussiones Mathematicae Graph Theory

Similarity:

We prove: (1) that c h P ( G ) - χ P ( G ) can be arbitrarily large, where c h P ( G ) and χ P ( G ) are P-choice and P-chromatic numbers, respectively, (2) the (P,L)-colouring version of Brooks’ and Gallai’s theorems.

On distinguishing and distinguishing chromatic numbers of hypercubes

Werner Klöckl (2008)

Discussiones Mathematicae Graph Theory

Similarity:

The distinguishing number D(G) of a graph G is the least integer d such that G has a labeling with d colors that is not preserved by any nontrivial automorphism. The restriction to proper labelings leads to the definition of the distinguishing chromatic number χ D ( G ) of G. Extending these concepts to infinite graphs we prove that D ( Q ) = 2 and χ D ( Q ) = 3 , where Q denotes the hypercube of countable dimension. We also show that χ D ( Q ) = 4 , thereby completing the investigation of finite hypercubes with respect to χ D . Our...

On subgraphs without large components

Glenn G. Chappell, John Gimbel (2017)

Mathematica Bohemica

Similarity:

We consider, for a positive integer k , induced subgraphs in which each component has order at most k . Such a subgraph is said to be k -divided. We show that finding large induced subgraphs with this property is NP-complete. We also consider a related graph-coloring problem: how many colors are required in a vertex coloring in which each color class induces a k -divided subgraph. We show that the problem of determining whether some given number of colors suffice is NP-complete, even for...

Edge-colouring of graphs and hereditary graph properties

Samantha Dorfling, Tomáš Vetrík (2016)

Czechoslovak Mathematical Journal

Similarity:

Edge-colourings of graphs have been studied for decades. We study edge-colourings with respect to hereditary graph properties. For a graph G , a hereditary graph property 𝒫 and l 1 we define χ 𝒫 , l ' ( G ) to be the minimum number of colours needed to properly colour the edges of G , such that any subgraph of G induced by edges coloured by (at most) l colours is in 𝒫 . We present a necessary and sufficient condition for the existence of χ 𝒫 , l ' ( G ) . We focus on edge-colourings of graphs with respect to the hereditary...

Sum labellings of cycle hypergraphs

Hanns-Martin Teichert (2000)

Discussiones Mathematicae Graph Theory

Similarity:

A hypergraph is a sum hypergraph iff there are a finite S ⊆ IN⁺ and d̲, [d̅] ∈ IN⁺ with 1 < d̲ ≤ [d̅] such that is isomorphic to the hypergraph d ̲ , [ d ̅ ] ( S ) = ( V , ) where V = S and = e S : d ̲ | e | [ d ̅ ] v e v S . For an arbitrary hypergraph the sum number σ = σ() is defined to be the minimum number of isolated vertices y , . . . , y σ V such that y , . . . , y σ is a sum hypergraph. Generalizing the graph Cₙ we obtain d-uniform hypergraphs where any d consecutive vertices of Cₙ form an edge. We determine sum numbers and investigate properties of sum labellings...

Edit distance measure for graphs

Tomasz Dzido, Krzysztof Krzywdziński (2015)

Czechoslovak Mathematical Journal

Similarity:

In this paper, we investigate a measure of similarity of graphs similar to the Ramsey number. We present values and bounds for g ( n , l ) , the biggest number k guaranteeing that there exist l graphs on n vertices, each two having edit distance at least k . By edit distance of two graphs G , F we mean the number of edges needed to be added to or deleted from graph G to obtain graph F . This new extremal number g ( n , l ) is closely linked to the edit distance of graphs. Using probabilistic methods we show...

Persistency in the Traveling Salesman Problem on Halin graphs

Vladimír Lacko (2000)

Discussiones Mathematicae Graph Theory

Similarity:

For the Traveling Salesman Problem (TSP) on Halin graphs with three types of cost functions: sum, bottleneck and balanced and with arbitrary real edge costs we compute in polynomial time the persistency partition E A l l , E S o m e , E N o n e of the edge set E, where: E A l l = e ∈ E, e belongs to all optimum solutions, E N o n e = e ∈ E, e does not belong to any optimum solution and E S o m e = e ∈ E, e belongs to some but not to all optimum solutions.

Generalized 3-edge-connectivity of Cartesian product graphs

Yuefang Sun (2015)

Czechoslovak Mathematical Journal

Similarity:

The generalized k -connectivity κ k ( G ) of a graph G was introduced by Chartrand et al. in 1984. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k -edge-connectivity which is defined as λ k ( G ) = min { λ ( S ) : S V ( G ) and | S | = k } , where λ ( S ) denotes the maximum number of pairwise edge-disjoint trees T 1 , T 2 , ... , T in G such that S V ( T i ) for 1 i . In this paper we prove that for any two connected graphs G and H we have λ 3 ( G H ) λ 3 ( G ) + λ 3 ( H ) , where G H is the Cartesian product of G and H . Moreover, the bound is sharp. We also...

On γ-labelings of trees

Gary Chartrand, David Erwin, Donald W. VanderJagt, Ping Zhang (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph of order n and size m. A γ-labeling of G is a one-to-one function f:V(G) → 0,1,2,...,m that induces a labeling f’: E(G) → 1,2,...,m of the edges of G defined by f’(e) = |f(u)-f(v)| for each edge e = uv of G. The value of a γ-labeling f is v a l ( f ) = Σ e E ( G ) f ' K ( e ) . The maximum value of a γ-labeling of G is defined as v a l m a x ( G ) = m a x v a l ( f ) : f i s a γ - l a b e l i n g o f G ; while the minimum value of a γ-labeling of G is v a l m i n ( G ) = m i n v a l ( f ) : f i s a γ - l a b e l i n g o f G ; The values v a l m a x ( S p , q ) and v a l m i n ( S p , q ) are determined for double stars S p , q . We present characterizations of connected graphs G of order n for which...

Embedding products of graphs into Euclidean spaces

Mikhail Skopenkov (2003)

Fundamenta Mathematicae

Similarity:

For any collection of graphs G , . . . , G N we find the minimal dimension d such that the product G × . . . × G N is embeddable into d (see Theorem 1 below). In particular, we prove that (K₅)ⁿ and ( K 3 , 3 ) are not embeddable into 2 n , where K₅ and K 3 , 3 are the Kuratowski graphs. This is a solution of a problem of Menger from 1929. The idea of the proof is a reduction to a problem from so-called Ramsey link theory: we show that any embedding L k O S 2 n - 1 , where O is a vertex of (K₅)ⁿ, has a pair of linked (n-1)-spheres.

Color-bounded hypergraphs, V: host graphs and subdivisions

Csilla Bujtás, Zsolt Tuza, Vitaly Voloshin (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A color-bounded hypergraph is a hypergraph (set system) with vertex set X and edge set = E₁,...,Eₘ, together with integers s i and t i satisfying 1 s i t i | E i | for each i = 1,...,m. A vertex coloring φ is proper if for every i, the number of colors occurring in edge E i satisfies s i | φ ( E i ) | t i . The hypergraph ℋ is colorable if it admits at least one proper coloring. We consider hypergraphs ℋ over a “host graph”, that means a graph G on the same vertex set X as ℋ, such that each E i induces a connected subgraph in G....

Intrinsic linking and knotting are arbitrarily complex

Erica Flapan, Blake Mellor, Ramin Naimi (2008)

Fundamenta Mathematicae

Similarity:

We show that, given any n and α, any embedding of any sufficiently large complete graph in ℝ³ contains an oriented link with components Q₁, ..., Qₙ such that for every i ≠ j, | l k ( Q i , Q j ) | α and | a ( Q i ) | α , where a ( Q i ) denotes the second coefficient of the Conway polynomial of Q i .

The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths

Halina Bielak, Kinga Dąbrowska (2015)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The Ramsey number R ( G , H ) for a pair of graphs G and H is defined as the smallest integer n such that, for any graph F on n vertices, either F contains G or F ¯ contains H as a subgraph, where F ¯ denotes the complement of F . We study Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths and determine these numbers for some cases. We extend many known results studied in [5, 14, 18, 19, 20]. In particular we count the numbers R ( K 1 + L n , P m ) and R ( K 1 + L n , C m ) for some integers m , n , where L n is...

On multiset colorings of generalized corona graphs

Yun Feng, Wensong Lin (2016)

Mathematica Bohemica

Similarity:

A vertex k -coloring of a graph G is a if M ( u ) M ( v ) for every edge u v E ( G ) , where M ( u ) and M ( v ) denote the multisets of colors of the neighbors of u and v , respectively. The minimum k for which G has a multiset k -coloring is the χ m ( G ) of G . For an integer 0 , the - of a graph G , cor ( G ) , is the graph obtained from G by adding, for each vertex v in G , new neighbors which are end-vertices. In this paper, the multiset chromatic numbers are determined for - of all complete graphs, the regular complete...

Remarks on D -integral complete multipartite graphs

Pavel Híc, Milan Pokorný (2016)

Czechoslovak Mathematical Journal

Similarity:

A graph is called distance integral (or D -integral) if all eigenvalues of its distance matrix are integers. In their study of D -integral complete multipartite graphs, Yang and Wang (2015) posed two questions on the existence of such graphs. We resolve these questions and present some further results on D -integral complete multipartite graphs. We give the first known distance integral complete multipartite graphs K p 1 , p 2 , p 3 with p 1 < p 2 < p 3 , and K p 1 , p 2 , p 3 , p 4 with p 1 < p 2 < p 3 < p 4 , as well as the infinite classes of distance integral...

On graceful colorings of trees

Sean English, Ping Zhang (2017)

Mathematica Bohemica

Similarity:

A proper coloring c : V ( G ) { 1 , 2 , ... , k } , k 2 of a graph G is called a graceful k -coloring if the induced edge coloring c ' : E ( G ) { 1 , 2 , ... , k - 1 } defined by c ' ( u v ) = | c ( u ) - c ( v ) | for each edge u v of G is also proper. The minimum integer k for which G has a graceful k -coloring is the graceful chromatic number χ g ( G ) . It is known that if T is a tree with maximum degree Δ , then χ g ( T ) 5 3 Δ and this bound is best possible. It is shown for each integer Δ 2 that there is an infinite class of trees T with maximum degree Δ such that χ g ( T ) = 5 3 Δ . In particular, we investigate for each...