Displaying similar documents to “Inequalities involving heat potentials and Green functions”

Tykhonov well-posedness of a heat transfer problem with unilateral constraints

Mircea Sofonea, Domingo A. Tarzia (2022)

Applications of Mathematics

Similarity:

We consider an elliptic boundary value problem with unilateral constraints and subdifferential boundary conditions. The problem describes the heat transfer in a domain D d and its weak formulation is in the form of a hemivariational inequality for the temperature field, denoted by 𝒫 . We associate to Problem 𝒫 an optimal control problem, denoted by 𝒬 . Then, using appropriate Tykhonov triples, governed by a nonlinear operator G and a convex K ˜ , we provide results concerning the well-posedness...

Second order elliptic operators with complex bounded measurable coefficients in  L p , Sobolev and Hardy spaces

Steve Hofmann, Svitlana Mayboroda, Alan McIntosh (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  L be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with L , such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in  L p , Sobolev, and some new Hardy spaces naturally associated to  L . First, we show...

Hydrodynamical behavior of symmetric exclusion with slow bonds

Tertuliano Franco, Patrícia Gonçalves, Adriana Neumann (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider the exclusion process in the one-dimensional discrete torus with N points, where all the bonds have conductance one, except a finite number of slow bonds, with conductance N - β , with β [ 0 , ) . We prove that the time evolution of the empirical density of particles, in the diffusive scaling, has a distinct behavior according to the range of the parameter β . If β [ 0 , 1 ) , the hydrodynamic limit is given by the usual heat equation. If β = 1 , it is given by a parabolic equation involving an operator...

Property C for ODE and Applications to an Inverse Problem for a Heat Equation

A. G. Ramm (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let j : = - d ² / d x ² + k ² q j ( x ) , k = const > 0, j = 1,2, 0 < e s s i n f q j ( x ) e s s s u p q j ( x ) < . Suppose that (*) 0 1 p ( x ) u ( x , k ) u ( x , k ) d x = 0 for all k > 0, where p is an arbitrary fixed bounded piecewise-analytic function on [0,1], which changes sign finitely many times, and u j solves the problem j u j = 0 , 0 ≤ x ≤ 1, u j ' ( 0 , k ) = 0 , u j ( 0 , k ) = 1 . It is proved that (*) implies p = 0. This result is applied to an inverse problem for a heat equation.

Initial measures for the stochastic heat equation

Daniel Conus, Mathew Joseph, Davar Khoshnevisan, Shang-Yuan Shiu (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a family of nonlinear stochastic heat equations of the form t u = u + σ ( u ) W ˙ , where W ˙ denotes space–time white noise, the generator of a symmetric Lévy process on 𝐑 , and σ is Lipschitz continuous and zero at 0. We show that this stochastic PDE has a random-field solution for every finite initial measure u 0 . Tight a priori bounds on the moments of the solution are also obtained. In the particular case that f = c f ' ' for some c g t ; 0 , we prove that if u 0 is a finite measure of compact support, then the...

Classical boundary value problems for integrable temperatures in a C 1 domain

Anna Grimaldi Piro, Francesco Ragnedda (1991)

Annales Polonici Mathematici

Similarity:

Abstract. We study a Neumann problem for the heat equation in a cylindrical domain with C 1 -base and data in h c 1 , a subspace of L 1. We derive our results, considering the action of an adjoint operator on B T M O C , a predual of h c 1 , and using known properties of this last space.

Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces

Xuefang Yan (2015)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , d , μ ) be a metric measure space endowed with a distance d and a nonnegative Borel doubling measure μ . Let L be a non-negative self-adjoint operator of order m on L 2 ( X ) . Assume that the semigroup e - t L generated by L satisfies the Davies-Gaffney estimate of order m and L satisfies the Plancherel type estimate. Let H L p ( X ) be the Hardy space associated with L . We show the boundedness of Stein’s square function 𝒢 δ ( L ) arising from Bochner-Riesz means associated to L from Hardy spaces H L p ( X ) to L p ( X ) , and also study...

Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data

Amy Poh Ai Ling, Masahiko Shimojō (2019)

Mathematica Bohemica

Similarity:

We consider solutions of quasilinear equations u t = Δ u m + u p in N with the initial data u 0 satisfying 0 < u 0 < M and lim | x | u 0 ( x ) = M for some constant M > 0 . It is known that if 0 < m < p with p > 1 , the blow-up set is empty. We find solutions u that blow up throughout N when m > p > 1 .

On the potential theory of some systems of coupled PDEs

Abderrahim Aslimani, Imad El Ghazi, Mohamed El Kadiri, Sabah Haddad (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we study some potential theoretical properties of solutions and super-solutions of some PDE systems (S) of type L 1 u = - μ 1 v , L 2 v = - μ 2 u , on a domain D of d , where μ 1 and μ 2 are suitable measures on D , and L 1 , L 2 are two second order linear differential elliptic operators on D with coefficients of class 𝒞 . We also obtain the integral representation of the nonnegative solutions and supersolutions of the system (S) by means of the Green kernels and Martin boundaries associated with L 1 and L 2 , and...

Non-isotropic Hausdorff capacity of exceptional sets for pluri-Green potentials in the unit ball of ℂⁿ

Kuzman Adzievski (2006)

Annales Polonici Mathematici

Similarity:

We study questions related to exceptional sets of pluri-Green potentials V μ in the unit ball B of ℂⁿ in terms of non-isotropic Hausdorff capacity. For suitable measures μ on the ball B, the pluri-Green potentials V μ are defined by V μ ( z ) = B l o g ( 1 / | ϕ z ( w ) | ) d μ ( w ) , where for a fixed z ∈ B, ϕ z denotes the holomorphic automorphism of B satisfying ϕ z ( 0 ) = z , ϕ z ( z ) = 0 and ( ϕ z ϕ z ) ( w ) = w for every w ∈ B. If dμ(w) = f(w)dλ(w), where f is a non-negative measurable function of B, and λ is the measure on B, invariant under all holomorphic automorphisms of...

Variation for the Riesz transform and uniform rectifiability

Albert Mas, Xavier Tolsa (2014)

Journal of the European Mathematical Society

Similarity:

For 1 n < d integers and ρ > 2 , we prove that an n -dimensional Ahlfors-David regular measure μ in d is uniformly n -rectifiable if and only if the ρ -variation for the Riesz transform with respect to μ is a bounded operator in L 2 ( μ ) . This result can be considered as a partial solution to a well known open problem posed by G. David and S. Semmes which relates the L 2 ( μ ) boundedness of the Riesz transform to the uniform rectifiability of μ .

On some subspaces of Morrey-Sobolev spaces and boundedness of Riesz integrals

Mouhamadou Dosso, Ibrahim Fofana, Moumine Sanogo (2013)

Annales Polonici Mathematici

Similarity:

For 1 ≤ q ≤ α ≤ p ≤ ∞, ( L q , l p ) α is a complex Banach space which is continuously included in the Wiener amalgam space ( L q , l p ) and contains the Lebesgue space L α . We study the closure ( L q , l p ) c , 0 α in ( L q , l p ) α of the space of test functions (infinitely differentiable and with compact support in d ) and obtain norm inequalities for Riesz potential operators and Riesz transforms in these spaces. We also introduce the Sobolev type space W ¹ ( ( L q , l p ) α ) (a subspace of a Morrey-Sobolev space, but a superspace of the classical Sobolev space...