Displaying similar documents to “On the number of ground states of the Edwards–Anderson spin glass model”

Ground states of supersymmetric matrix models

Gian Michele Graf (1998-1999)

Séminaire Équations aux dérivées partielles

Similarity:

We consider supersymmetric matrix Hamiltonians. The existence of a zero-energy bound state, in particular for the d = 9 model, is of interest in M-theory. While we do not quite prove its existence, we show that the decay at infinity such a state would have is compatible with normalizability (and hence existence) in d = 9 . Moreover, it would be unique. Other values of d , where the situation is somewhat different, shall also be addressed. The analysis is based on a Born-Oppenheimer approximation....

On the Klainerman–Machedon conjecture for the quantum BBGKY hierarchy with self-interaction

Xuwen Chen, Justin Holmer (2016)

Journal of the European Mathematical Society

Similarity:

We consider the 3D quantum BBGKY hierarchy which corresponds to the N -particle Schrödinger equation. We assume the pair interaction is N 3 β 1 V ( B β ) . For the interaction parameter β ( 0 , 2 / 3 ) , we prove that, provided an energy bound holds for solutions to the BBKGY hierarchy, the N limit points satisfy the space-time bound conjectured by S. Klainerman and M. Machedon [45] in 2008. The energy bound was proven to hold for β ( 0 , 3 / 5 ) in [28]. This allows, in the case β ( 0 , 3 / 5 ) , for the application of the Klainerman–Machedon...

Scale-free percolation

Maria Deijfen, Remco van der Hofstad, Gerard Hooghiemstra (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We formulate and study a model for inhomogeneous long-range percolation on d . Each vertex x d is assigned a non-negative weight W x , where ( W x ) x d are i.i.d. random variables. Conditionally on the weights, and given two parameters α , λ g t ; 0 , the edges are independent and the probability that there is an edge between x and y is given by p x y = 1 - exp { - λ W x W y / | x - y | α } . The parameter λ is the percolation parameter, while α describes the long-range nature of the model. We focus on the degree distribution in the resulting graph, on whether...

Logarithmically improved blow-up criterion for smooth solutions to the Leray- α -magnetohydrodynamic equations

Ines Ben Omrane, Sadek Gala, Jae-Myoung Kim, Maria Alessandra Ragusa (2019)

Archivum Mathematicum

Similarity:

In this paper, the Cauchy problem for the 3 D Leray- α -MHD model is investigated. We obtain the logarithmically improved blow-up criterion of smooth solutions for the Leray- α -MHD model in terms of the magnetic field B only in the framework of homogeneous Besov space with negative index.

Odd cutsets and the hard-core model on d

Ron Peled, Wojciech Samotij (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider the hard-core lattice gas model on d and investigate its phase structure in high dimensions. We prove that when the intensity parameter exceeds C d - 1 / 3 ( log d ) 2 , the model exhibits multiple hard-core measures, thus improving the previous bound of C d - 1 / 4 ( log d ) 3 / 4 given by Galvin and Kahn. At the heart of our approach lies the study of a certain class of edge cutsets in d , the so-called odd cutsets, that appear naturally as the boundary between different phases in the hard-core model. We provide a refined...

Quantum Singularity Theory for A ( r - 1 ) and r -Spin Theory

Huijun Fan, Tyler Jarvis, Yongbin Ruan (2011)

Annales de l’institut Fourier

Similarity:

We give a review of our construction of a cohomological field theory for quasi-homogeneous singularities and the r -spin theory of Jarvis-Kimura-Vaintrob. We further prove that for a singularity W of type A our construction of the stack of W -curves is canonically isomorphic to the stack of r -spin curves described by Abramovich and Jarvis. We further prove that our theory satisfies all the Jarvis-Kimura-Vaintrob axioms for an r -spin virtual class. Therefore, the Faber-Shadrin-Zvonkine...

Stability and semiclassics in self-generated fields

László Erdős, Soren Fournais, Jan Philip Solovej (2013)

Journal of the European Mathematical Society

Similarity:

We consider non-interacting particles subject to a fixed external potential V and a self-generated magnetic field B . The total energy includes the field energy β B 2 and we minimize over all particle states and magnetic fields. In the case of spin-1/2 particles this minimization leads to the coupled Maxwell-Pauli system. The parameter β tunes the coupling strength between the field and the particles and it effectively determines the strength of the field. We investigate the stability and...

Quasi-polynomial mixing of the 2D stochastic Ising model with “plus” boundary up to criticality

Eyal Lubetzky, Fabio Martinelli, Allan Sly, Fabio Lucio Toninelli (2013)

Journal of the European Mathematical Society

Similarity:

We considerably improve upon the recent result of [37] on the mixing time of Glauber dynamics for the 2D Ising model in a box of side L at low temperature and with random boundary conditions whose distribution P stochastically dominates the extremal plus phase. An important special case is when P is concentrated on the homogeneous all-plus configuration, where the mixing time T M I X is conjectured to be polynomial in L . In [37] it was shown that for a large enough inverse-temperature β and...

Edit distance measure for graphs

Tomasz Dzido, Krzysztof Krzywdziński (2015)

Czechoslovak Mathematical Journal

Similarity:

In this paper, we investigate a measure of similarity of graphs similar to the Ramsey number. We present values and bounds for g ( n , l ) , the biggest number k guaranteeing that there exist l graphs on n vertices, each two having edit distance at least k . By edit distance of two graphs G , F we mean the number of edges needed to be added to or deleted from graph G to obtain graph F . This new extremal number g ( n , l ) is closely linked to the edit distance of graphs. Using probabilistic methods we show...

On distinguishing and distinguishing chromatic numbers of hypercubes

Werner Klöckl (2008)

Discussiones Mathematicae Graph Theory

Similarity:

The distinguishing number D(G) of a graph G is the least integer d such that G has a labeling with d colors that is not preserved by any nontrivial automorphism. The restriction to proper labelings leads to the definition of the distinguishing chromatic number χ D ( G ) of G. Extending these concepts to infinite graphs we prove that D ( Q ) = 2 and χ D ( Q ) = 3 , where Q denotes the hypercube of countable dimension. We also show that χ D ( Q ) = 4 , thereby completing the investigation of finite hypercubes with respect to χ D . Our...

Existentially closed II₁ factors

Ilijas Farah, Isaac Goldbring, Bradd Hart, David Sherman (2016)

Fundamenta Mathematicae

Similarity:

We examine the properties of existentially closed ( ω -embeddable) II₁ factors. In particular, we use the fact that every automorphism of an existentially closed ( ω -embeddable) II₁ factor is approximately inner to prove that Th() is not model-complete. We also show that Th() is complete for both finite and infinite forcing and use the latter result to prove that there exist continuum many nonisomorphic existentially closed models of Th().

Generalized connectivity of some total graphs

Yinkui Li, Yaping Mao, Zhao Wang, Zongtian Wei (2021)

Czechoslovak Mathematical Journal

Similarity:

We study the generalized k -connectivity κ k ( G ) as introduced by Hager in 1985, as well as the more recently introduced generalized k -edge-connectivity λ k ( G ) . We determine the exact value of κ k ( G ) and λ k ( G ) for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case k = 3 .

Remarks on D -integral complete multipartite graphs

Pavel Híc, Milan Pokorný (2016)

Czechoslovak Mathematical Journal

Similarity:

A graph is called distance integral (or D -integral) if all eigenvalues of its distance matrix are integers. In their study of D -integral complete multipartite graphs, Yang and Wang (2015) posed two questions on the existence of such graphs. We resolve these questions and present some further results on D -integral complete multipartite graphs. We give the first known distance integral complete multipartite graphs K p 1 , p 2 , p 3 with p 1 < p 2 < p 3 , and K p 1 , p 2 , p 3 , p 4 with p 1 < p 2 < p 3 < p 4 , as well as the infinite classes of distance integral...

Note on improper coloring of 1 -planar graphs

Yanan Chu, Lei Sun, Jun Yue (2019)

Czechoslovak Mathematical Journal

Similarity:

A graph G = ( V , E ) is called improperly ( d 1 , , d k ) -colorable if the vertex set V can be partitioned into subsets V 1 , , V k such that the graph G [ V i ] induced by the vertices of V i has maximum degree at most d i for all 1 i k . In this paper, we mainly study the improper coloring of 1 -planar graphs and show that 1 -planar graphs with girth at least 7 are ( 2 , 0 , 0 , 0 ) -colorable.

Intrinsic linking and knotting are arbitrarily complex

Erica Flapan, Blake Mellor, Ramin Naimi (2008)

Fundamenta Mathematicae

Similarity:

We show that, given any n and α, any embedding of any sufficiently large complete graph in ℝ³ contains an oriented link with components Q₁, ..., Qₙ such that for every i ≠ j, | l k ( Q i , Q j ) | α and | a ( Q i ) | α , where a ( Q i ) denotes the second coefficient of the Conway polynomial of Q i .

Characterizing the powerset by a complete (Scott) sentence

Ioannis Souldatos (2013)

Fundamenta Mathematicae

Similarity:

This paper is part II of a study on cardinals that are characterizable by a Scott sentence, continuing previous work of the author. A cardinal κ is characterized by a Scott sentence ϕ if ϕ has a model of size κ, but no model of size κ⁺. The main question in this paper is the following: Are the characterizable cardinals closed under the powerset operation? We prove that if β is characterized by a Scott sentence, then 2 β + β is (homogeneously) characterized by a Scott sentence, for all 0 <...