The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Poids des duaux des codes BCH de distance prescrite 2 a + 1 et sommes exponentielles”

Valeur en 2 de fonctions L de formes modulaires de poids 2 : théorème de Beilinson explicite

François Brunault (2007)

Bulletin de la Société Mathématique de France

Similarity:

Nous montrons une version explicite du théorème de Beilinson pour la courbe modulaire X 1 ( N ) . Ce résultat est la première étape d’un travail reliant, d’une part, la valeur en 2 de la fonction L d’une forme primitive de poids 2 , et d’autre part, la fonction dilogarithme associée à la courbe modulaire correspondante, dans l’esprit de la conjecture de Zagier pour les courbes elliptiques. Comme corollaire de notre théorème, dans le cas où N est premier, nous répondons à une question de Schappacher...

Les shifts à poids dissymétriques sont hyper-réflexifs

Xavier Dussau (2002)

Bulletin de la Société Mathématique de France

Similarity:

Nous prouvons l’hyper-réflexivité du shift bilatéral S ω sur ω 2 ( ) , lorsque le poids vérifie ω ( n ) = 1 for n 0 et lim n - ω ( n ) = + .

Sous-groupes H -loxodromiques

Antonin Guilloux (2011)

Bulletin de la Société Mathématique de France

Similarity:

On considère une extension finie k de p , avec p un nombre premier, H un sous-groupe d’indice fini de k * et le groupe SL ( n , k ) . Nous montrons que SL ( n , k ) admet un sous-groupe p -Zariski-dense dont toutes les matrices ont leur spectre inclus dans H si et seulement si soit - 1 est dans le sous-groupe H , soit n n’est pas congru à 2 modulo 4.

Un q -analogue du Théorème de Fukazawa-Gel’fond-Gramain

Jean-Paul Bézivin (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Soit q dans tel que | q | 2 . Dans cette note, nous démontrons que si une fonction entière f a une croissance assez lente et si f ( q n + i q m ) [ i ] pour n , m , alors f est un polynôme.

Propriétés (Q) et (C). Variété commutante

Jean-Yves Charbonnel (2004)

Bulletin de la Société Mathématique de France

Similarity:

Soient X une variété algébrique complexe, lisse, irréductible, E et F deux espaces vectoriels complexes de dimension finie et μ un morphisme de X dans l’espace Lin ( E , F ) des applications linéaires de E dans F . Pour x X , on note E ( x ) et x · E le noyau et l’image de μ ( x ) , μ ¯ x le morphisme de X dans Lin ( E ( x ) , F / ( x · E ) ) qui associe à y l’application linéaire v μ ( y ) ( v ) + x · E . Soit i μ la dimension minimale de E ( x ) . On dit que μ asi i μ ¯ x est inférieur à i μ . Soient F * le dual de F , S ( F ) l’algèbre symétrique de F , μ l’idéal de 𝒪 X S ( F ) engendré par les fonctions...

Une construction de

Pierre Colmez (2012)

Rendiconti del Seminario Matematico della Università di Padova

Similarity:

Un résultat générique d’unicité pour les équations d’évolution

Laure Saint-Raymond (2002)

Bulletin de la Société Mathématique de France

Similarity:

Soit un espace topologique, ' un espace métrique et ( S ) un système d’équations d’évolution admettant une solution dans  ' pour toute donnée initiale dans  et stable vis-à-vis des données initiales sur . On montre que l’ensemble des données initiales pour lesquelles ( S ) admet une unique solution est un G δ de . En particulier, si l’unicité est vraie sur un sous-ensemble dense de , elle l’est génériquement.

Sur les orbites d’un sous-groupe sphérique dans la variété des drapeaux

Nicolas Ressayre (2004)

Bulletin de la Société Mathématique de France

Similarity:

Soient G un groupe algébrique complexe réductif et connexe, B un sous-groupe de Borel de G et H un sous-groupe sphérique de G . Soit X un plongement G × G -équivariant de G . Nous savons que B × H n’a qu’un nombre fini d’orbites dans G  ; nous montrons qu’il n’en a qu’un nombre fini dans X . Soit V ¯ l’adhérence dans X d’une orbite de B × H dans G et 𝒪 ¯ l’adhérence d’une orbite de G × G dans X . Si X est toroïdal, nous montrons que l’intersection V ¯ 𝒪 ¯ est propre dans X et la décrivons ensemblistement. Si de plus...