Displaying similar documents to “Ramification of the Gauss map of complete minimal surfaces in 3 and 4 on annular ends”

A Note on Surfaces in 2 ×

Stefano Montaldo, Irene I. Onnis (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

In this article we consider surfaces in the product space 2 × of the hyperbolic plane 2 with the real line. The main results are: a description of some geometric properties of minimal graphs; new examples of complete minimal graphs; the local classification of totally umbilical surfaces.

Counting lines on surfaces

Samuel Boissière, Alessandra Sarti (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

This paper deals with surfaces with many lines. It is well-known that a cubic contains 27 of them and that the maximal number for a quartic is 64 . In higher degree the question remains open. Here we study classical and new constructions of surfaces with high number of lines. We obtain a symmetric octic with 352 lines, and give examples of surfaces of degree d containing a sequence of d ( d - 2 ) + 4 skew lines.

On some properties of three-dimensional minimal sets in 4

Tien Duc Luu (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We prove in this paper the Hölder regularity of Almgren minimal sets of dimension 3 in 4 around a 𝕐 -point and the existence of a point of particular type of a Mumford-Shah minimal set in 4 , which is very close to a 𝕋 . This will give a local description of minimal sets of dimension 3 in 4 around a singular point and a property of Mumford-Shah minimal sets in 4 .

A note on minimal zero-sum sequences over ℤ

Papa A. Sissokho (2014)

Acta Arithmetica

Similarity:

A zero-sum sequence over ℤ is a sequence with terms in ℤ that sum to 0. It is called minimal if it does not contain a proper zero-sum subsequence. Consider a minimal zero-sum sequence over ℤ with positive terms a , . . . , a h and negative terms b , . . . , b k . We prove that h ≤ ⌊σ⁺/k⌋ and k ≤ ⌊σ⁺/h⌋, where σ = i = 1 h a i = - j = 1 k b j . These bounds are tight and improve upon previous results. We also show a natural partial order structure on the collection of all minimal zero-sum sequences over the set i∈ ℤ : -n ≤ i ≤ n for any positive...

Gauss curvature estimates for minimal graphs

Maria Nowak, Magdalena Wołoszkiewicz (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We estimate the Gauss curvature of nonparametric minimal surfaces over the two-slit plane ( ( - , - 1 ] [ 1 , ) ) at points above the interval ( - 1 , 1 ) .

Translation surfaces of finite type in Sol 3

Bendehiba Senoussi, Hassan Al-Zoubi (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In the homogeneous space Sol 3 , a translation surface is parametrized by r ( s , t ) = γ 1 ( s ) * γ 2 ( t ) , where γ 1 and γ 2 are curves contained in coordinate planes. In this article, we study translation invariant surfaces in Sol 3 , which has finite type immersion.

Definable stratification satisfying the Whitney property with exponent 1

Beata Kocel-Cynk (2007)

Annales Polonici Mathematici

Similarity:

We prove that for a finite collection of sets A , . . . , A s k + n definable in an o-minimal structure there exists a compatible definable stratification such that for any stratum the fibers of its projection onto k satisfy the Whitney property with exponent 1.

The KSBA compactification for the moduli space of degree two K 3 pairs

Radu Laza (2016)

Journal of the European Mathematical Society

Similarity:

Inspired by the ideas of the minimal model program, Shepherd-Barron, Kollár, and Alexeev have constructed a geometric compactification for the moduli space of surfaces of log general type. In this paper, we discuss one of the simplest examples that fits into this framework: the case of pairs ( X , H ) consisting of a degree two K 3 surface X and an ample divisor H . Specifically, we construct and describe explicitly a geometric compactification P ¯ 2 for the moduli of degree two K 3 pairs. This compactification...

A note on generalized projections in c₀

Beata Deręgowska, Barbara Lewandowska (2014)

Annales Polonici Mathematici

Similarity:

Let V ⊂ Z be two subspaces of a Banach space X. We define the set of generalized projections by V ( X , Z ) : = P ( X , Z ) : P | V = i d . Now let X = c₀ or l m , Z:= kerf for some f ∈ X* and V : = Z l (n < m). The main goal of this paper is to discuss existence, uniqueness and strong uniqueness of a minimal generalized projection in this case. Also formulas for the relative generalized projection constant and the strong uniqueness constant will be given (cf. J. Blatter and E. W. Cheney [Ann. Mat. Pura Appl. 101 (1974), 215-227] and...

Numerical Campedelli surfaces with fundamental group of order 9

Margarida Mendes Lopes, Rita Pardini (2008)

Journal of the European Mathematical Society

Similarity:

We give explicit constructions of all the numerical Campedelli surfaces, i.e. the minimal surfaces of general type with K 2 = 2 and p g = 0 , whose fundamental group has order 9. There are three families, one with π 1 alg = 9 and two with π 1 alg = 3 2 . We also determine the base locus of the bicanonical system of these surfaces. It turns out that for the surfaces with π 1 alg = 9 and for one of the families of surfaces with π 1 alg = 3 2 the base locus consists of two points. To our knowlegde, these are the only known examples of surfaces...

On the uniqueness of elliptic K3 surfaces with maximal singular fibre

Matthias Schütt, Andreas Schweizer (2013)

Annales de l’institut Fourier

Similarity:

We explicitly determine the elliptic K 3 surfaces with section and maximal singular fibre. If the characteristic of the ground field is different from 2 , for each of the two possible maximal fibre types, I 19 and I 14 * , the surface is unique. In characteristic 2 the maximal fibre types are I 18 and I 13 * , and there exist two (resp. one) one-parameter families of such surfaces.

Even sets of nodes on sextic surfaces

Fabrizio Catanese, Fabio Tonoli (2007)

Journal of the European Mathematical Society

Similarity:

We determine the possible even sets of nodes on sextic surfaces in 3 , showing in particular that their cardinalities are exactly the numbers in the set { 24 , 32 , 40 , 56 } . We also show that all the possible cases admit an explicit description. The methods that we use are an interplay of coding theory and projective geometry on one hand, and of homological and computer algebra on the other. We give a detailed geometric construction for the new case of an even set of 56 nodes, but the ultimate verification...

Systole growth for finite area hyperbolic surfaces

Florent Balacheff, Eran Makover, Hugo Parlier (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

In this note, we observe that the maximum value achieved by the systole function over all complete finite area hyperbolic surfaces of a given signature ( g , n ) is greater than a function that grows logarithmically in terms of the ratio g / n .

Some surfaces with maximal Picard number

Arnaud Beauville (2014)

Journal de l’École polytechnique — Mathématiques

Similarity:

For a smooth complex projective variety, the rank ρ of the Néron-Severi group is bounded by the Hodge number h 1 , 1 . Varieties with ρ = h 1 , 1 have interesting properties, but are rather sparse, particularly in dimension 2 . We discuss in this note a number of examples, in particular those constructed from curves with special Jacobians.

Zero-set property of o-minimal indefinitely Peano differentiable functions

Andreas Fischer (2008)

Annales Polonici Mathematici

Similarity:

Given an o-minimal expansion ℳ of a real closed field R which is not polynomially bounded. Let denote the definable indefinitely Peano differentiable functions. If we further assume that ℳ admits cell decomposition, each definable closed subset A of Rⁿ is the zero-set of a function f:Rⁿ → R. This implies approximation of definable continuous functions and gluing of functions defined on closed definable sets.

The minimal resultant locus

Robert Rumely (2015)

Acta Arithmetica

Similarity:

Let K be a complete, algebraically closed nonarchimedean valued field, and let φ(z) ∈ K(z) have degree d ≥ 2. We study how the resultant of φ varies under changes of coordinates. For γ ∈ GL₂(K), we show that the map γ o r d ( R e s ( φ γ ) ) factors through a function o r d R e s φ ( · ) on the Berkovich projective line, which is piecewise affine and convex up. The minimal resultant is achieved either at a single point in P ¹ K , or on a segment, and the minimal resultant locus is contained in the tree in P ¹ K spanned by the fixed points...

O-minimal fields with standard part map

Jana Maříková (2010)

Fundamenta Mathematicae

Similarity:

Let R be an o-minimal field and V a proper convex subring with residue field k and standard part (residue) map st: V → k. Let k i n d be the expansion of k by the standard parts of the definable relations in R. We investigate the definable sets in k i n d and conditions on (R,V) which imply o-minimality of k i n d . We also show that if R is ω-saturated and V is the convex hull of ℚ in R, then the sets definable in k i n d are exactly the standard parts of the sets definable in (R,V).

Natural pseudodistances between closed surfaces

Pietro Donatini, Patrizio Frosini (2007)

Journal of the European Mathematical Society

Similarity:

Let us consider two closed surfaces , 𝒩 of class C 1 and two functions ϕ : , ψ : 𝒩 of class C 1 , called measuring functions. The natural pseudodistance d between the pairs ( , ) , ( 𝒩 , ψ ) is defined as the infimum of Θ ( f ) : = max P | ϕ ( P ) ψ ( f ( P ) ) | as f varies in the set of all homeomorphisms from onto 𝒩 . In this paper we prove that the natural pseudodistance equals either | c 1 c 2 | , 1 2 | c 1 c 2 | , or 1 3 | c 1 c 2 | , where c 1 and c 2 are two suitable critical values of the measuring functions. This shows that a previous relation between the natural pseudodistance and...