Displaying similar documents to “A novel robust principal component analysis method for image and video processing”

The scaling limits of a heavy tailed Markov renewal process

Julien Sohier (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In this paper we consider heavy tailed Markov renewal processes and we prove that, suitably renormalised, they converge in law towards the α -stable regenerative set. We then apply these results to the strip wetting model which is a random walk S constrained above a wall and rewarded or penalized when it hits the strip [ 0 , ) × [ 0 , a ] where a is a given positive number. The convergence result that we establish allows to characterize the scaling limit of this process at criticality.

Tangential Markov inequality in L p norms

Agnieszka Kowalska (2015)

Banach Center Publications

Similarity:

In 1889 A. Markov proved that for every polynomial p in one variable the inequality | | p ' | | [ - 1 , 1 ] ( d e g p ) ² | | p | | [ - 1 , 1 ] is true. Moreover, the exponent 2 in this inequality is the best possible one. A tangential Markov inequality is a generalization of the Markov inequality to tangential derivatives of certain sets in higher-dimensional Euclidean spaces. We give some motivational examples of sets that admit the tangential Markov inequality with the sharp exponent. The main theorems show that the results on certain arcs...

Evaluating default priors with a generalization of Eaton’s Markov chain

Brian P. Shea, Galin L. Jones (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider evaluating improper priors in a formal Bayes setting according to the consequences of their use. Let 𝛷 be a class of functions on the parameter space and consider estimating elements of 𝛷 under quadratic loss. If the formal Bayes estimator of every function in 𝛷 is admissible, then the prior is strongly admissible with respect to 𝛷 . Eaton’s method for establishing strong admissibility is based on studying the stability properties of a particular Markov chain associated with...

Coherent randomness tests and computing the K -trivial sets

Laurent Bienvenu, Noam Greenberg, Antonín Kučera, André Nies, Dan Turetsky (2016)

Journal of the European Mathematical Society

Similarity:

We introduce Oberwolfach randomness, a notion within Demuth’s framework of statistical tests with moving components; here the components’ movement has to be coherent across levels. We show that a ML-random set computes all K -trivial sets if and only if it is not Oberwolfach random, and indeed that there is a K -trivial set which is not computable from any Oberwolfach random set. We show that Oberwolfach random sets satisfy effective versions of almost-everywhere theorems of analysis,...

Minimax nonparametric prediction

Maciej Wilczyński (2001)

Applicationes Mathematicae

Similarity:

Let U₀ be a random vector taking its values in a measurable space and having an unknown distribution P and let U₁,...,Uₙ and V , . . . , V m be independent, simple random samples from P of size n and m, respectively. Further, let z , . . . , z k be real-valued functions defined on the same space. Assuming that only the first sample is observed, we find a minimax predictor d⁰(n,U₁,...,Uₙ) of the vector Y m = j = 1 m ( z ( V j ) , . . . , z k ( V j ) ) T with respect to a quadratic errors loss function.

Class groups of large ranks in biquadratic fields

Mahesh Kumar Ram (2024)

Czechoslovak Mathematical Journal

Similarity:

For any integer n > 1 , we provide a parametric family of biquadratic fields with class groups having n -rank at least 2. Moreover, in some cases, the n -rank is bigger than 4.

Random walks in ( + ) 2 with non-zero drift absorbed at the axes

Irina Kurkova, Kilian Raschel (2011)

Bulletin de la Société Mathématique de France

Similarity:

Spatially homogeneous random walks in ( + ) 2 with non-zero jump probabilities at distance at most 1 , with non-zero drift in the interior of the quadrant and absorbed when reaching the axes are studied. Absorption probabilities generating functions are obtained and the asymptotic of absorption probabilities along the axes is made explicit. The asymptotic of the Green functions is computed along all different infinite paths of states, in particular along those approaching the axes. ...

Markov's property for kth derivative

Mirosław Baran, Beata Milówka, Paweł Ozorka (2012)

Annales Polonici Mathematici

Similarity:

Consider the normed space ( ( N ) , | | · | | ) of all polynomials of N complex variables, where || || a norm is such that the mapping L g : ( ( N ) , | | · | | ) f g f ( ( N ) , | | · | | ) is continuous, with g being a fixed polynomial. It is shown that the Markov type inequality | / z j P | | M ( d e g P ) m | | P | | , j = 1,...,N, P ( N ) , with positive constants M and m is equivalent to the inequality | | N / z . . . z N P | | M ' ( d e g P ) m ' | | P | | , P ( N ) , with some positive constants M’ and m’. A similar equivalence result is obtained for derivatives of a fixed order k ≥ 2, which can be more specifically formulated in the language of normed algebras....

Filter factors of truncated TLS regularization with multiple observations

Iveta Hnětynková, Martin Plešinger, Jana Žáková (2017)

Applications of Mathematics

Similarity:

The total least squares (TLS) and truncated TLS (T-TLS) methods are widely known linear data fitting approaches, often used also in the context of very ill-conditioned, rank-deficient, or ill-posed problems. Regularization properties of T-TLS applied to linear approximation problems A x b were analyzed by Fierro, Golub, Hansen, and O’Leary (1997) through the so-called filter factors allowing to represent the solution in terms of a filtered pseudoinverse of A applied to b . This paper focuses...

Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in d

Piotr Bugiel (1998)

Annales Polonici Mathematici

Similarity:

Asymptotic properties of the sequences (a) P φ j g j = 1 and (b) j - 1 i = 0 j - 1 P φ g j = 1 , where P φ : L ¹ L ¹ is the Frobenius-Perron operator associated with a nonsingular Markov map defined on a σ-finite measure space, are studied for g ∈ G = f ∈ L¹: f ≥ 0 and ⃦f ⃦ = 1. An operator-theoretic analogue of Rényi’s Condition is introduced. It is proved that under some additional assumptions this condition implies the L¹-convergence of the sequences (a) and (b) to a unique g₀ ∈ G. The general result is applied to some smooth Markov...

Insensitivity analysis of Markov chains

Kocurek, Martin

Similarity:

Sensitivity analysis of irreducible Markov chains considers an original Markov chain with transition probability matrix P and modified Markov chain with transition probability matrix P . For their respective stationary probability vectors π , π ˜ , some of the following charactristics are usually studied: π - π ˜ p for asymptotical stability [3], | π i - π ˜ i | , | π i - π ˜ i | π i for componentwise stability or sensitivity [1]. For functional transition probabilities, P = P ( t ) and stationary probability vector π ( t ) , derivatives are also used...