Displaying similar documents to “Every braid admits a short sigma-definite expression”

On the complexity of braids

Ivan Dynnikov, Bert Wiest (2007)

Journal of the European Mathematical Society

Similarity:

We define a measure of “complexity” of a braid which is natural with respect to both an algebraic and a geometric point of view. Algebraically, we modify the standard notion of the length of a braid by introducing generators i j , which are Garside-like half-twists involving strings i through j , and by counting powered generators Δ i j k as log ( | k | + 1 ) instead of simply | k | . The geometrical complexity is some natural measure of the amount of distortion of the n times punctured disk caused by a homeomorphism....

The 4-string braid group B 4 has property RD and exponential mesoscopic rank

Sylvain Barré, Mikaël Pichot (2011)

Bulletin de la Société Mathématique de France

Similarity:

We prove that the braid group B 4 on 4 strings, its central quotient B 4 / z , and the automorphism group Aut ( F 2 ) of the free group F 2 on 2 generators, have the property RD of Haagerup–Jolissaint. We also prove that the braid group B 4 is a group of intermediate mesoscopic rank (of dimension 3). More precisely, we show that the above three groups have exponential mesoscopic rank, i.e., that they contain exponentially many large flat balls which are not included in flats.

Thompson’s conjecture for the alternating group of degree 2 p and 2 p + 1

Azam Babai, Ali Mahmoudifar (2017)

Czechoslovak Mathematical Journal

Similarity:

For a finite group G denote by N ( G ) the set of conjugacy class sizes of G . In 1980s, J. G. Thompson posed the following conjecture: If L is a finite nonabelian simple group, G is a finite group with trivial center and N ( G ) = N ( L ) , then G L . We prove this conjecture for an infinite class of simple groups. Let p be an odd prime. We show that every finite group G with the property Z ( G ) = 1 and N ( G ) = N ( A i ) is necessarily isomorphic to A i , where i { 2 p , 2 p + 1 } .

Characterization of the alternating groups by their order and one conjugacy class length

Alireza Khalili Asboei, Reza Mohammadyari (2016)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group, and let N ( G ) be the set of conjugacy class sizes of G . By Thompson’s conjecture, if L is a finite non-abelian simple group, G is a finite group with a trivial center, and N ( G ) = N ( L ) , then L and G are isomorphic. Recently, Chen et al. contributed interestingly to Thompson’s conjecture under a weak condition. They only used the group order and one or two special conjugacy class sizes of simple groups and characterized successfully sporadic simple groups (see Li’s PhD dissertation)....

A note on normal generation and generation of groups

Andreas Thom (2015)

Communications in Mathematics

Similarity:

In this note we study sets of normal generators of finitely presented residually p -finite groups. We show that if an infinite, finitely presented, residually p -finite group G is normally generated by g 1 , , g k with order n 1 , , n k { 1 , 2 , } { } , then β 1 ( 2 ) ( G ) k - 1 - i = 1 k 1 n i , where β 1 ( 2 ) ( G ) denotes the first 2 -Betti number of G . We also show that any k -generated group with β 1 ( 2 ) ( G ) k - 1 - ε must have girth greater than or equal 1 / ε .

A variation of Thompson's conjecture for the symmetric groups

Mahdi Abedei, Ali Iranmanesh, Farrokh Shirjian (2020)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group and let N ( G ) denote the set of conjugacy class sizes of G . Thompson’s conjecture states that if G is a centerless group and S is a non-abelian simple group satisfying N ( G ) = N ( S ) , then G S . In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that G Sym ( p + 1 ) if and only if | G | = ( p + 1 ) ! and G has a special conjugacy class of size ( p + 1 ) ! / p , where p > 5 is a prime number. Consequently, if G is a centerless group with N ( G ) = N ( Sym ( p + 1 ) ) , then...

L p , q spaces

Joseph Kupka

Similarity:

CONTENTS1. Introduction...................................................................................................... 52. Notation and basic terminology........................................................................... 73. Definition and basic properties of the L p , q spaces................................. 114. Integral representation of bounded linear functionals on L p , q ( B ) ........ 235. Examples in L p , q theory...................................................................................

Invariance of the parity conjecture for p -Selmer groups of elliptic curves in a D 2 p n -extension

Thomas de La Rochefoucauld (2011)

Bulletin de la Société Mathématique de France

Similarity:

We show a p -parity result in a D 2 p n -extension of number fields L / K ( p 5 ) for the twist 1 η τ : W ( E / K , 1 η τ ) = ( - 1 ) 1 η τ , X p ( E / L ) , where E is an elliptic curve over K , η and τ are respectively the quadratic character and an irreductible representation of degree 2 of Gal ( L / K ) = D 2 p n , and X p ( E / L ) is the p -Selmer group. The main novelty is that we use a congruence result between ε 0 -factors (due to Deligne) for the determination of local root numbers in bad cases (places of additive reduction above 2 and 3). We also give applications to the p -parity conjecture...

Can ( p ) ever be amenable?

Matthew Daws, Volker Runde (2008)

Studia Mathematica

Similarity:

It is known that ( p ) is not amenable for p = 1,2,∞, but whether or not ( p ) is amenable for p ∈ (1,∞) ∖ 2 is an open problem. We show that, if ( p ) is amenable for p ∈ (1,∞), then so are ( ( p ) ) and ( ( p ) ) . Moreover, if ( ( p ) ) is amenable so is ( , ( E ) ) for any index set and for any infinite-dimensional p -space E; in particular, if ( ( p ) ) is amenable for p ∈ (1,∞), then so is ( ( p ² ) ) . We show that ( ( p ² ) ) is not amenable for p = 1,∞, but also that our methods fail us if p ∈ (1,∞). Finally, for p ∈ (1,2) and a free ultrafilter over...

C * -points vs P -points and P -points

Jorge Martinez, Warren Wm. McGovern (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In a Tychonoff space X , the point p X is called a C * -point if every real-valued continuous function on C { p } can be extended continuously to p . Every point in an extremally disconnected space is a C * -point. A classic example is the space 𝐖 * = ω 1 + 1 consisting of the countable ordinals together with ω 1 . The point ω 1 is known to be a C * -point as well as a P -point. We supply a characterization of C * -points in totally ordered spaces. The remainder of our time is aimed at studying when a point in a product space...

Cambrian fans

Nathan Reading, David E. Speyer (2009)

Journal of the European Mathematical Society

Similarity:

For a finite Coxeter group W and a Coxeter element c of W ; the c -Cambrian fan is a coarsening of the fan defined by the reflecting hyperplanes of W . Its maximal cones are naturally indexed by the c -sortable elements of W . The main result of this paper is that the known bijection cl c between c -sortable elements and c -clusters induces a combinatorial isomorphism of fans. In particular, the c -Cambrian fan is combinatorially isomorphic to the normal fan of the generalized associahedron for...

Equalizers and coactions of groups

Martin Arkowitz, Mauricio Gutierrez (2002)

Fundamenta Mathematicae

Similarity:

If f:G → H is a group homomorphism and p,q are the projections from the free product G*H onto its factors G and H respectively, let the group f G * H be the equalizer of fp and q:G*H → H. Then p restricts to an epimorphism p f = p | f : f G . A right inverse (section) G f of p f is called a coaction on G. In this paper we study f and the sections of p f . We consider the following topics: the structure of f as a free product, the restrictions on G resulting from the existence of a coaction, maps of coactions and...

A density version of the Carlson–Simpson theorem

Pandelis Dodos, Vassilis Kanellopoulos, Konstantinos Tyros (2014)

Journal of the European Mathematical Society

Similarity:

We prove a density version of the Carlson–Simpson Theorem. Specifically we show the following. For every integer k 2 and every set A of words over k satisfying lim sup n | A [ k ] n | / k n > 0 there exist a word c over k and a sequence ( w n ) of left variable words over k such that the set c { c w 0 ( a 0 ) . . . w n ( a n ) : n and a 0 , . . . , a n [ k ] } is contained in A . While the result is infinite-dimensional its proof is based on an appropriate finite and quantitative version, also obtained in the paper.

Product decompositions of quasirandom groups and a Jordan type theorem

Nikolay Nikolov, László Pyber (2011)

Journal of the European Mathematical Society

Similarity:

We first note that a result of Gowers on product-free sets in groups has an unexpected consequence: If k is the minimal degree of a representation of the finite group G , then for every subset B of G with | B | > | G | / k 1 / 3 we have B 3 = G . We use this to obtain improved versions of recent deep theorems of Helfgott and of Shalev concerning product decompositions of finite simple groups, with much simpler proofs. On the other hand, we prove a version of Jordan’s theorem which implies that if k 2 , then G has a...

On the structural theory of  II 1 factors of negatively curved groups

Ionut Chifan, Thomas Sinclair (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Ozawa showed in [21] that for any i.c.c. hyperbolic group, the associated group factor L Γ is solid. Developing a new approach that combines some methods of Peterson [29], Ozawa and Popa [27, 28], and Ozawa [25], we strengthen this result by showing that L Γ is strongly solid. Using our methods in cooperation with a cocycle superrigidity result of Ioana [12], we show that profinite actions of lattices in  Sp ( n , 1 ) , n 2 , are virtually W * -superrigid.