The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Geometric rigidity of × m invariant measures”

On square functions associated to sectorial operators

Christian Le Merdy (2004)

Bulletin de la Société Mathématique de France

Similarity:

We give new results on square functions x F = 0 F ( t A ) x 2 d t t 1 / 2 p associated to a sectorial operator A on L p for 1 < p < . Under the assumption that A is actually R -sectorial, we prove equivalences of the form K - 1 x G x F K x G for suitable functions F , G . We also show that A has a bounded H functional calculus with respect to . F . Then we apply our results to the study of conditions under which we have an estimate ( 0 | C e - t A ( x ) | 2 d t ) 1 / 2 q M x p , when - A generates a bounded semigroup e - t A on L p and C : D ( A ) L q is a linear mapping.

On the topology of polynomials with bounded integer coefficients

De-Jun Feng (2016)

Journal of the European Mathematical Society

Similarity:

For a real number q > 1 and a positive integer m , let Y m ( q ) : = i = 0 n ϵ i q i : ϵ i 0 , ± 1 , ... , ± m , n = 0 , 1 , ... . In this paper, we show that Y m ( q ) is dense in if and only if q < m + 1 and q is not a Pisot number. This completes several previous results and answers an open question raised by Erdös, Joó and Komornik [8].

Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent

Hongbin Wang (2016)

Czechoslovak Mathematical Journal

Similarity:

Let Ω L s ( S n - 1 ) for s 1 be a homogeneous function of degree zero and b a BMO function. The commutator generated by the Marcinkiewicz integral μ Ω and b is defined by [ b , μ Ω ] ( f ) ( x ) = ( 0 | x - y | t Ω ( x - y ) | x - y | n - 1 [ b ( x ) - b ( y ) ] f ( y ) d y | 2 d t t 3 1 / 2 . In this paper, the author proves the ( L p ( · ) ( n ) , L p ( · ) ( n ) ) -boundedness of the Marcinkiewicz integral operator μ Ω and its commutator [ b , μ Ω ] when p ( · ) satisfies some conditions. Moreover, the author obtains the corresponding result about μ Ω and [ b , μ Ω ] on Herz spaces with variable exponent.

Convolution operators with anisotropically homogeneous measures on 2 n with n-dimensional support

E. Ferreyra, T. Godoy, M. Urciuolo (2002)

Colloquium Mathematicae

Similarity:

Let α i , β i > 0 , 1 ≤ i ≤ n, and for t > 0 and x = (x₁,...,xₙ) ∈ ℝⁿ, let t x = ( t α x , . . . , t α x ) , t x = ( t β x , . . . , t β x ) and | | x | | = i = 1 n | x i | 1 / α i . Let φ₁,...,φₙ be real functions in C ( - 0 ) such that φ = (φ₁,..., φₙ) satisfies φ(t • x) = t ∘ φ(x). Let γ > 0 and let μ be the Borel measure on 2 n given by μ ( E ) = χ E ( x , φ ( x ) ) | | x | | γ - α d x , where α = i = 1 n α i and dx denotes the Lebesgue measure on ℝⁿ. Let T μ f = μ f and let | | T μ | | p , q be the operator norm of T μ from L p ( 2 n ) into L q ( 2 n ) , where the L p spaces are taken with respect to the Lebesgue measure. The type set E μ is defined by E μ = ( 1 / p , 1 / q ) : | | T μ | | p , q < , 1 p , q . In the case α i β k for 1 ≤ i,k ≤ n we characterize the...

Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps

Viviane Baladi, Daniel Smania (2012)

Annales scientifiques de l'École Normale Supérieure

Similarity:

We consider C 2 families t f t of  C 4 unimodal maps f t whose critical point is slowly recurrent, and we show that the unique absolutely continuous invariant measure μ t of  f t depends differentiably on  t , as a distribution of order 1 . The proof uses transfer operators on towers whose level boundaries are mollified via smooth cutoff functions, in order to avoid artificial discontinuities. We give a new representation of  μ t for a Benedicks-Carleson map f t , in terms of a single smooth function and the...

Sum-product theorems and incidence geometry

Mei-Chu Chang, Jozsef Solymosi (2007)

Journal of the European Mathematical Society

Similarity:

In this paper we prove the following theorems in incidence geometry. 1. There is δ > 0 such that for any P 1 , , P 4 , and Q 1 , , Q n 2 , if there are n ( 1 + δ ) / 2 many distinct lines between P i and Q j for all i , j , then P 1 , , P 4 are collinear. If the number of the distinct lines is < c n 1 / 2 then the cross ratio of the four points is algebraic. 2. Given c > 0 , there is δ > 0 such that for any P 1 , P 2 , P 3 2 noncollinear, and Q 1 , , Q n 2 , if there are c n 1 / 2 many distinct lines between P i and Q j for all i , j , then for any P 2 { P 1 , P 2 , P 3 } , we have δ n distinct lines between P and Q j . 3. Given...

A Diophantine inequality with four squares and one k th power of primes

Quanwu Mu, Minhui Zhu, Ping Li (2019)

Czechoslovak Mathematical Journal

Similarity:

Let k 5 be an odd integer and η be any given real number. We prove that if λ 1 , λ 2 , λ 3 , λ 4 , μ are nonzero real numbers, not all of the same sign, and λ 1 / λ 2 is irrational, then for any real number σ with 0 < σ < 1 / ( 8 ϑ ( k ) ) , the inequality | λ 1 p 1 2 + λ 2 p 2 2 + λ 3 p 3 2 + λ 4 p 4 2 + μ p 5 k + η | < max 1 j 5 p j - σ has infinitely many solutions in prime variables p 1 , p 2 , , p 5 , where ϑ ( k ) = 3 × 2 ( k - 5 ) / 2 for k = 5 , 7 , 9 and ϑ ( k ) = [ ( k 2 + 2 k + 5 ) / 8 ] for odd integer k with k 11 . This improves a recent result in W. Ge, T. Wang (2018).

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

On the Configuration Spaces of Grassmannian Manifolds

Sandro Manfredini, Simona Settepanella (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Let h i ( k , n ) be the i -th ordered configuration space of all distinct points H 1 , ... , H h in the Grassmannian G r ( k , n ) of k -dimensional subspaces of n , whose sum is a subspace of dimension i . We prove that h i ( k , n ) is (when non empty) a complex submanifold of G r ( k , n ) h of dimension i ( n - i ) + h k ( i - k ) and its fundamental group is trivial if i = m i n ( n , h k ) , h k n and n &gt; 2 and equal to the braid group of the sphere P 1 if n = 2 . Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. k = n - 1 .