Displaying similar documents to “Invariance of the Gibbs measure for the Benjamin–Ono equation”

On Ordinary and Standard Lebesgue Measures on

Gogi Pantsulaia (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

New concepts of Lebesgue measure on are proposed and some of their realizations in the ZFC theory are given. Also, it is shown that Baker’s both measures [1], [2], Mankiewicz and Preiss-Tišer generators [6] and the measure of [4] are not α-standard Lebesgue measures on for α = (1,1,...).

Unique Bernoulli g -measures

Anders Johansson, Anders Öberg, Mark Pollicott (2012)

Journal of the European Mathematical Society

Similarity:

We improve and subsume the conditions of Johansson and Öberg and Berbee for uniqueness of a g -measure, i.e., a stationary distribution for chains with complete connections. In addition, we prove that these unique g -measures have Bernoulli natural extensions. We also conclude that we have convergence in the Wasserstein metric of the iterates of the adjoint transfer operator to the g -measure.

Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS

Andrea R. Nahmod, Tadahiro Oh, Luc Rey-Bellet, Gigliola Staffilani (2012)

Journal of the European Mathematical Society

Similarity:

We construct an invariant weighted Wiener measure associated to the periodic derivative nonlinear Schrödinger equation in one dimension and establish global well-posedness for data living in its support. In particular almost surely for data in a Fourier–Lebesgue space L s , r ( T ) with s 1 2 , 2 < r < 4 , ( s - 1 ) r < - 1 and scaling like H 1 2 - ϵ ( 𝕋 ) , for small ϵ > 0 . We also show the invariance of this measure.

Quantization Dimension Estimate of Inhomogeneous Self-Similar Measures

Mrinal Kanti Roychowdhury (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We consider an inhomogeneous measure μ with the inhomogeneous part a self-similar measure ν, and show that for a given r ∈ (0,∞) the lower and the upper quantization dimensions of order r of μ are bounded below by the quantization dimension D r ( ν ) of ν and bounded above by a unique number κ r ( 0 , ) , related to the temperature function of the thermodynamic formalism that arises in the multifractal analysis of μ.

Interpolating sequences, Carleson measures and Wirtinger inequality

Eric Amar (2008)

Annales Polonici Mathematici

Similarity:

Let S be a sequence of points in the unit ball of ℂⁿ which is separated for the hyperbolic distance and contained in the zero set of a Nevanlinna function. We prove that the associated measure μ S : = a S ( 1 - | a | ² ) δ a is bounded, by use of the Wirtinger inequality. Conversely, if X is an analytic subset of such that any δ -separated sequence S has its associated measure μ S bounded by C/δⁿ, then X is the zero set of a function in the Nevanlinna class of . As an easy consequence, we prove that if S is a dual...

On Beurling measure algebras

Ross Stokke (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show how the measure theory of regular compacted-Borel measures defined on the δ -ring of compacted-Borel subsets of a weighted locally compact group ( G , ω ) provides a compatible framework for defining the corresponding Beurling measure algebra ( G , ω ) , thus filling a gap in the literature.

Invariant subspaces for operators in a general II1-factor

Uffe Haagerup, Hanne Schultz (2009)

Publications Mathématiques de l'IHÉS

Similarity:

Let ℳ be a von Neumann factor of type II1 with a normalized trace τ. In 1983 L. G. Brown showed that to every operator T∈ℳ one can in a natural way associate a spectral distribution measure μ T (now called the Brown measure of T), which is a probability measure in ℂ with support in the spectrum σ(T) of T. In this paper it is shown that for every T∈ℳ and every Borel set B in ℂ, there is a unique closed T-invariant subspace 𝒦 = 𝒦 T ( B ) affiliated with ℳ, such that the Brown measure of T | 𝒦 is concentrated...

Characteristic points, rectifiability and perimeter measure on stratified groups

Valentino Magnani (2006)

Journal of the European Mathematical Society

Similarity:

We establish an explicit connection between the perimeter measure of an open set E with C 1 boundary and the spherical Hausdorff measure S Q 1 restricted to E , when the ambient space is a stratified group endowed with a left invariant sub-Riemannian metric and Q denotes the Hausdorff dimension of the group. Our formula implies that the perimeter measure of E is less than or equal to S Q 1 ( E ) up to a dimensional factor. The validity of this estimate positively answers a conjecture raised by Danielli,...

Osgood type conditions for an m th-order differential equation

Stanisaw Szufla (1998)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We present a new theorem on the differential inequality u ( m ) w ( u ) . Next, we apply this result to obtain existence theorems for the equation x ( m ) = f ( t , x ) .

On an Invariant Borel Measure in Hilbert Space

G. Pantsulaia (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

An example of a nonzero σ-finite Borel measure μ with everywhere dense linear manifold μ of admissible (in the sense of invariance) translation vectors is constructed in the Hilbert space ℓ₂ such that μ and any shift μ ( a ) of μ by a vector a μ are neither equivalent nor orthogonal. This extends a result established in [7].

Asymptotic nature of higher Mahler measure

(2014)

Acta Arithmetica

Similarity:

We consider Akatsuka’s zeta Mahler measure as a generating function of the higher Mahler measure m k ( P ) of a polynomial P , where m k ( P ) is the integral of l o g k | P | over the complex unit circle. Restricting ourselves to P(x) = x - r with |r| = 1 we show some new asymptotic results regarding m k ( P ) , in particular | m k ( P ) | / k ! 1 / π as k → ∞.

Less than 2 ω many translates of a compact nullset may cover the real line

Márton Elekes, Juris Steprāns (2004)

Fundamenta Mathematicae

Similarity:

We answer a question of Darji and Keleti by proving that there exists a compact set C₀ ⊂ ℝ of measure zero such that for every perfect set P ⊂ ℝ there exists x ∈ ℝ such that (C₀+x) ∩ P is uncountable. Using this C₀ we answer a question of Gruenhage by showing that it is consistent with ZFC (as it follows e.g. from c o f ( ) < 2 ω ) that less than 2 ω many translates of a compact set of measure zero can cover ℝ.

Extensions of generic measure-preserving actions

Julien Melleray (2014)

Annales de l’institut Fourier

Similarity:

We show that, whenever Γ is a countable abelian group and Δ is a finitely-generated subgroup of Γ , a generic measure-preserving action of Δ on a standard atomless probability space ( X , μ ) extends to a free measure-preserving action of Γ on ( X , μ ) . This extends a result of Ageev, corresponding to the case when Δ is infinite cyclic.

Algebraic genericity of strict-order integrability

Luis Bernal-González (2010)

Studia Mathematica

Similarity:

We provide sharp conditions on a measure μ defined on a measurable space X guaranteeing that the family of functions in the Lebesgue space L p ( μ , X ) (p ≥ 1) which are not q-integrable for any q > p (or any q < p) contains large subspaces of L p ( μ , X ) (without zero). This improves recent results due to Aron, García, Muñoz, Palmberg, Pérez, Puglisi and Seoane. It is also shown that many non-q-integrable functions can even be obtained on any nonempty open subset of X, assuming that X is a topological...

Relations between Shy Sets and Sets of ν p -Measure Zero in Solovay’s Model

G. Pantsulaia (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

An example of a non-zero non-atomic translation-invariant Borel measure ν p on the Banach space p ( 1 p ) is constructed in Solovay’s model. It is established that, for 1 ≤ p < ∞, the condition " ν p -almost every element of p has a property P" implies that “almost every” element of p (in the sense of [4]) has the property P. It is also shown that the converse is not valid.

Polynomial relations amongst algebraic units of low measure

John Garza (2014)

Acta Arithmetica

Similarity:

For an algebraic number field and a subset α 1 , . . . , α r , we establish a lower bound for the average of the logarithmic heights that depends on the ideal of polynomials in [ x 1 , . . . , x r ] vanishing at the point ( α 1 , . . . , α r ) .

Estimates of capacity of self-similar measures

Jozef Myjak, Tomasz Szarek (2002)

Annales Polonici Mathematici

Similarity:

We give lower and upper estimates of the capacity of self-similar measures generated by iterated function systems ( S i , p i ) : i = 1 , . . . , N where S i are bi-lipschitzean transformations.

The Morse minimal system is finitarily Kakutani equivalent to the binary odometer

Mrinal Kanti Roychowdhury, Daniel J. Rudolph (2008)

Fundamenta Mathematicae

Similarity:

Two invertible dynamical systems (X,,μ,T) and (Y,,ν,S), where X and Y are Polish spaces and Borel probability spaces and T, S are measure preserving homeomorphisms of X and Y, are said to be finitarily orbit equivalent if there exists an invertible measure preserving mapping ϕ from a subset X₀ of X of measure one onto a subset Y₀ of Y of full measure such that (1) ϕ | X is continuous in the relative topology on X₀ and ϕ - 1 | Y is continuous in the relative topology on Y₀, (2) ϕ ( O r b T ( x ) ) = O r b S ( ϕ ( x ) ) for μ-a.e. x ∈ X. (X,,μ,T)...

On inhomogeneous self-similar measures and their L q spectra

Przemysław Liszka (2013)

Annales Polonici Mathematici

Similarity:

Let S i : d d for i = 1,..., N be contracting similarities, let ( p , . . . , p N , p ) be a probability vector and let ν be a probability measure on d with compact support. It is well known that there exists a unique inhomogeneous self-similar probability measure μ on d such that μ = i = 1 N p i μ S i - 1 + p ν . We give satisfactory estimates for the lower and upper bounds of the L q spectra of inhomogeneous self-similar measures. The case in which there are a countable number of contracting similarities and probabilities is considered. In particular,...

Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data

Andrea Dall&amp;#039;Aglio, Sergio Segura de León (2019)

Czechoslovak Mathematical Journal

Similarity:

We prove boundedness and continuity for solutions to the Dirichlet problem for the equation - div ( a ( x , u ) ) = h ( x , u ) + μ , in Ω N , where the left-hand side is a Leray-Lions operator from W 0 1 , p ( Ω ) into W - 1 , p ' ( Ω ) with 1 < p < N , h ( x , s ) is a Carathéodory function which grows like | s | p - 1 and μ is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of μ .

Sets of β -expansions and the Hausdorff measure of slices through fractals

Tom Kempton (2016)

Journal of the European Mathematical Society

Similarity:

We study natural measures on sets of β -expansions and on slices through self similar sets. In the setting of β -expansions, these allow us to better understand the measure of maximal entropy for the random β -transformation and to reinterpret a result of Lindenstrauss, Peres and Schlag in terms of equidistribution. Each of these applications is relevant to the study of Bernoulli convolutions. In the fractal setting this allows us to understand how to disintegrate Hausdorff measure by slicing,...

Strong measure zero and meager-additive sets through the prism of fractal measures

Ondřej Zindulka (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We develop a theory of sharp measure zero sets that parallels Borel’s strong measure zero, and prove a theorem analogous to Galvin–Mycielski–Solovay theorem, namely that a set of reals has sharp measure zero if and only if it is meager-additive. Some consequences: A subset of 2 ω is meager-additive if and only if it is -additive; if f : 2 ω 2 ω is continuous and X is meager-additive, then so is f ( X ) .

Univoque sets for real numbers

Fan Lü, Bo Tan, Jun Wu (2014)

Fundamenta Mathematicae

Similarity:

For x ∈ (0,1), the univoque set for x, denoted (x), is defined to be the set of β ∈ (1,2) such that x has only one representation of the form x = x₁/β + x₂/β² + ⋯ with x i 0 , 1 . We prove that for any x ∈ (0,1), (x) contains a sequence β k k 1 increasing to 2. Moreover, (x) is a Lebesgue null set of Hausdorff dimension 1; both (x) and its closure ( x ) ¯ are nowhere dense.