Displaying similar documents to “Hamiltonian loops from the ergodic point of view”

Example of a mean ergodic L¹ operator with the linear rate of growth

Wojciech Kosek (2011)

Colloquium Mathematicae

Similarity:

The rate of growth of an operator T satisfying the mean ergodic theorem (MET) cannot be faster than linear. It was recently shown (Kornfeld-Kosek, Colloq. Math. 98 (2003)) that for every γ > 0, there are positive L¹[0,1] operators T satisfying MET with l i m n | | T | | / n 1 - γ = . In the class of positive L¹ operators this is the most one can hope for in the sense that for every such operator T, there exists a γ₀ > 0 such that l i m s u p | | T | | / n 1 - γ = 0 . In this note we construct an example of a nonpositive L¹ operator with the...

Positive L¹ operators associated with nonsingular mappings and an example of E. Hille

Isaac Kornfeld, Wojciech Kosek (2003)

Colloquium Mathematicae

Similarity:

E. Hille [Hi1] gave an example of an operator in L¹[0,1] satisfying the mean ergodic theorem (MET) and such that supₙ||Tⁿ|| = ∞ (actually, | | T | | n 1 / 4 ). This was the first example of a non-power bounded mean ergodic L¹ operator. In this note, the possible rates of growth (in n) of the norms of Tⁿ for such operators are studied. We show that, for every γ > 0, there are positive L¹ operators T satisfying the MET with l i m n | | T | | / n 1 - γ = . I n t h e c l a s s o f p o s i t i v e o p e r a t o r s t h e s e e x a m p l e s a r e t h e b e s t p o s s i b l e i n t h e s e n s e t h a t f o r e v e r y s u c h o p e r a t o r T t h e r e e x i s t s a γ > 0 s u c h t h a t lim supn→ ∞ ||Tⁿ||/n1-γ₀ = 0 . A class of numerical sequences αₙ, intimately...

Mixing via families for measure preserving transformations

Rui Kuang, Xiangdong Ye (2008)

Colloquium Mathematicae

Similarity:

In topological dynamics a theory of recurrence properties via (Furstenberg) families was established in the recent years. In the current paper we aim to establish a corresponding theory of ergodicity via families in measurable dynamical systems (MDS). For a family ℱ (of subsets of ℤ₊) and a MDS (X,,μ,T), several notions of ergodicity related to ℱ are introduced, and characterized via the weak topology in the induced Hilbert space L²(μ). T is ℱ-convergence ergodic of order k if for any...

Generalizations of Cesàro means and poles of the resolvent

Laura Burlando (2004)

Studia Mathematica

Similarity:

An improvement of the generalization-obtained in a previous article [Bu1] by the author-of the uniform ergodic theorem to poles of arbitrary order is derived. In order to answer two natural questions suggested by this result, two examples are also given. Namely, two bounded linear operators T and A are constructed such that n - 2 T converges uniformly to zero, the sum of the range and the kernel of 1-T being closed, and n - 3 k = 0 n - 1 A k converges uniformly, the sum of the range of 1-A and the kernel of (1-A)²...

Norm convergence of some power series of operators in L p with applications in ergodic theory

Christophe Cuny (2010)

Studia Mathematica

Similarity:

Let X be a closed subspace of L p ( μ ) , where μ is an arbitrary measure and 1 < p < ∞. Let U be an invertible operator on X such that s u p n | | U | | < . Motivated by applications in ergodic theory, we obtain (optimal) conditions for the convergence of series like n 1 ( U f ) / n 1 - α , 0 ≤ α < 1, in terms of | | f + + U n - 1 f | | p , generalizing results for unitary (or normal) operators in L²(μ). The proofs make use of the spectral integration initiated by Berkson and Gillespie and, more particularly, of results from a paper by Berkson-Bourgain-Gillespie. ...

On the ergodic decomposition for a cocycle

Jean-Pierre Conze, Albert Raugi (2009)

Colloquium Mathematicae

Similarity:

Let (X,,μ,τ) be an ergodic dynamical system and φ be a measurable map from X to a locally compact second countable group G with left Haar measure m G . We consider the map τ φ defined on X × G by τ φ : ( x , g ) ( τ x , φ ( x ) g ) and the cocycle ( φ ) n generated by φ. Using a characterization of the ergodic invariant measures for τ φ , we give the form of the ergodic decomposition of μ ( d x ) m G ( d g ) or more generally of the τ φ -invariant measures μ χ ( d x ) χ ( g ) m G ( d g ) , where μ χ ( d x ) is χ∘φ-conformal for an exponential χ on G.

Pointwise convergence for subsequences of weighted averages

Patrick LaVictoire (2011)

Colloquium Mathematicae

Similarity:

We prove that if μₙ are probability measures on ℤ such that μ̂ₙ converges to 0 uniformly on every compact subset of (0,1), then there exists a subsequence n k such that the weighted ergodic averages corresponding to μ n k satisfy a pointwise ergodic theorem in L¹. We further discuss the relationship between Fourier decay and pointwise ergodic theorems for subsequences, considering in particular the averages along n² + ⌊ρ(n)⌋ for a slowly growing function ρ. Under some monotonicity assumptions,...

Ergodic theorems in fully symmetric spaces of τ-measurable operators

Vladimir Chilin, Semyon Litvinov (2015)

Studia Mathematica

Similarity:

Junge and Xu (2007), employing the technique of noncommutative interpolation, established a maximal ergodic theorem in noncommutative L p -spaces, 1 < p < ∞, and derived corresponding maximal ergodic inequalities and individual ergodic theorems. In this article, we derive maximal ergodic inequalities in noncommutative L p -spaces directly from the results of Yeadon (1977) and apply them to prove corresponding individual and Besicovitch weighted ergodic theorems. Then we extend these...

Non-Typical Points for β-Shifts

David Färm, Tomas Persson (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We study sets of non-typical points under the map f β β x mod 1 for non-integer β and extend our results from [Fund. Math. 209 (2010)] in several directions. In particular, we prove that sets of points whose forward orbit avoid certain Cantor sets, and the set of points for which ergodic averages diverge, have large intersection properties. We observe that the technical condition β > 1.541 found in the above paper can be removed.

Dispersing cocycles and mixing flows under functions

Klaus Schmidt (2002)

Fundamenta Mathematicae

Similarity:

Let T be a measure-preserving and mixing action of a countable abelian group G on a probability space (X,,μ) and A a locally compact second countable abelian group. A cocycle c: G × X → A for T disperses if l i m g c ( g , · ) - α ( g ) = in measure for every map α: G → A. We prove that such a cocycle c does not disperse if and only if there exists a compact subgroup A₀ ⊂ A such that the composition θ ∘ c: G × X → A/A₀ of c with the quotient map θ: A → A/A₀ is trivial (i.e. cohomologous to a homomorphism η: G → A/A₀). This...

The one-sided ergodic Hilbert transform in Banach spaces

Guy Cohen, Christophe Cuny, Michael Lin (2010)

Studia Mathematica

Similarity:

Let T be a power-bounded operator on a (real or complex) Banach space. We study the convergence of the one-sided ergodic Hilbert transform l i m n k = 1 n ( T k x ) / k . We prove that weak and strong convergence are equivalent, and in a reflexive space also s u p n | | k = 1 n ( T k x ) / k | | < is equivalent to the convergence. We also show that - k = 1 ( T k ) / k (which converges on (I-T)X) is precisely the infinitesimal generator of the semigroup ( I - T ) | ( I - T ) X ¯ r .

On the (C,α) Cesàro bounded operators

Elmouloudi Ed-dari (2004)

Studia Mathematica

Similarity:

For a given linear operator T in a complex Banach space X and α ∈ ℂ with ℜ (α) > 0, we define the nth Cesàro mean of order α of the powers of T by M α = ( A α ) - 1 k = 0 n A n - k α - 1 T k . For α = 1, we find M ¹ = ( n + 1 ) - 1 k = 0 n T k , the usual Cesàro mean. We give necessary and sufficient conditions for a (C,α) bounded operator to be (C,α) strongly (weakly) ergodic.

JOP's counting function and Jones' square function

Karin Reinhold (2006)

Studia Mathematica

Similarity:

We study a class of square functions in a general framework with applications to a variety of situations: samples along subsequences, averages of d actions and of positive L¹ contractions. We also study the relationship between a counting function first introduced by Jamison, Orey and Pruitt, in a variety of situations, and the corresponding ergodic averages. We show that the maximal counting function is not dominated by the square functions.

Distortion bounds for C 2 + η unimodal maps

Mike Todd (2007)

Fundamenta Mathematicae

Similarity:

We obtain estimates for derivative and cross-ratio distortion for C 2 + η (any η > 0) unimodal maps with non-flat critical points. We do not require any “Schwarzian-like” condition. For two intervals J ⊂ T, the cross-ratio is defined as the value B(T,J): = (|T| |J|)/(|L| |R|) where L,R are the left and right connected components of T∖J respectively. For an interval map g such that g T : T is a diffeomorphism, we consider the cross-ratio distortion to be B(g,T,J): = B(g(T),g(J))/B(T,J). We prove...

Marcinkiewicz multipliers of higher variation and summability of operator-valued Fourier series

Earl Berkson (2014)

Studia Mathematica

Similarity:

Let f V r ( ) r ( ) , where, for 1 ≤ r < ∞, V r ( ) (resp., r ( ) ) denotes the class of functions (resp., bounded functions) g: → ℂ such that g has bounded r-variation (resp., uniformly bounded r-variations) on (resp., on the dyadic arcs of ). In the author’s recent article [New York J. Math. 17 (2011)] it was shown that if is a super-reflexive space, and E(·): ℝ → () is the spectral decomposition of a trigonometrically well-bounded operator U ∈ (), then over a suitable non-void open interval of r-values,...

Infinite measure preserving flows with infinite ergodic index

Alexandre I. Danilenko, Anton V. Solomko (2009)

Colloquium Mathematicae

Similarity:

We construct a rank-one infinite measure preserving flow ( T r ) r such that for each p > 0, the “diagonal” flow ( T r × × T r ) r ( p t i m e s ) on the product space is ergodic.

Spectral theory and operator ergodic theory on super-reflexive Banach spaces

Earl Berkson (2010)

Studia Mathematica

Similarity:

On reflexive spaces trigonometrically well-bounded operators have an operator-ergodic-theory characterization as the invertible operators U such that s u p n , z | | 0 < | k | n ( 1 - | k | / ( n + 1 ) ) k - 1 z k U k | | < . (*) Trigonometrically well-bounded operators permeate many settings of modern analysis, and this note highlights the advances in both their spectral theory and operator ergodic theory made possible by a recent rekindling of interest in the R. C. James inequalities for super-reflexive spaces. When the James inequalities are combined with...

Transference of weak type bounds of multiparameter ergodic and geometric maximal operators

Paul Hagelstein, Alexander Stokolos (2012)

Fundamenta Mathematicae

Similarity:

Let U , . . . , U d be a non-periodic collection of commuting measure preserving transformations on a probability space (Ω,Σ,μ). Also let Γ be a nonempty subset of d and the associated collection of rectangular parallelepipeds in d with sides parallel to the axes and dimensions of the form n × × n d with ( n , . . . , n d ) Γ . The associated multiparameter geometric and ergodic maximal operators M and M Γ are defined respectively on L ¹ ( d ) and L¹(Ω) by M g ( x ) = s u p x R 1 / | R | R | g ( y ) | d y and M Γ f ( ω ) = s u p ( n , . . . , n d ) Γ 1 / n n d j = 0 n - 1 j d = 0 n d - 1 | f ( U j U d j d ω ) | . Given a Young function Φ, it is shown that M satisfies the weak type estimate ...

Multiparameter ergodic Cesàro-α averages

A. L. Bernardis, R. Crescimbeni, C. Ferrari Freire (2015)

Colloquium Mathematicae

Similarity:

Net (X,ℱ,ν) be a σ-finite measure space. Associated with k Lamperti operators on L p ( ν ) , T , . . . , T k , n ̅ = ( n , . . . , n k ) k and α ̅ = ( α , . . . , α k ) with 0 < α j 1 , we define the ergodic Cesàro-α̅ averages n ̅ , α ̅ f = 1 / ( j = 1 k A n j α j ) i k = 0 n k i = 0 n j = 1 k A n j - i j α j - 1 T k i k T i f . For these averages we prove the almost everywhere convergence on X and the convergence in the L p ( ν ) norm, when n , . . . , n k independently, for all f L p ( d ν ) with p > 1/α⁎ where α = m i n 1 j k α j . In the limit case p = 1/α⁎, we prove that the averages n ̅ , α ̅ f converge almost everywhere on X for all f in the Orlicz-Lorentz space Λ ( 1 / α , φ m - 1 ) with φ ( t ) = t ( 1 + l o g t ) m . To obtain the result in the limit case we need...

Moving averages

S. V. Butler, J. M. Rosenblatt (2008)

Colloquium Mathematicae

Similarity:

In ergodic theory, certain sequences of averages A k f may not converge almost everywhere for all f ∈ L¹(X), but a sufficiently rapidly growing subsequence A m k f of these averages will be well behaved for all f. The order of growth of this subsequence that is sufficient is often hyperexponential, but not necessarily so. For example, if the averages are A k f ( x ) = 1 / ( 2 k ) j = 4 k + 1 4 k + 2 k f ( T j x ) , then the subsequence A k ² f will not be pointwise good even on L , but the subsequence A 2 k f will be pointwise good on L¹. Understanding when the hyperexponential...

On the convergence to 0 of mₙξmod 1

Bassam Fayad, Jean-Paul Thouvenot (2014)

Acta Arithmetica

Similarity:

We show that for any irrational number α and a sequence m l l of integers such that l i m l | | | m l α | | | = 0 , there exists a continuous measure μ on the circle such that l i m l | | | m l θ | | | d μ ( θ ) = 0 . This implies that any rigidity sequence of any ergodic transformation is a rigidity sequence for some weakly mixing dynamical system. On the other hand, we show that for any α ∈ ℝ - ℚ, there exists a sequence m l l of integers such that | | | m l α | | | 0 and such that m l θ [ 1 ] is dense on the circle if and only if θ ∉ ℚα + ℚ.

Almost everywhere convergence of generalized ergodic transforms for invertible power-bounded operators in L p

Christophe Cuny (2011)

Colloquium Mathematicae

Similarity:

We show that some results of Gaposhkin about a.e. convergence of series associated to a unitary operator U acting on L²(X,Σ,μ) (μ is a σ-finite measure) may be extended to the case where U is an invertible power-bounded operator acting on L p ( X , Σ , μ ) , p > 1. The proofs make use of the spectral integration initiated by Berkson-Gillespie and, more specifically, of recent results of the author.

Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in d

Piotr Bugiel (1998)

Annales Polonici Mathematici

Similarity:

Asymptotic properties of the sequences (a) P φ j g j = 1 and (b) j - 1 i = 0 j - 1 P φ g j = 1 , where P φ : L ¹ L ¹ is the Frobenius-Perron operator associated with a nonsingular Markov map defined on a σ-finite measure space, are studied for g ∈ G = f ∈ L¹: f ≥ 0 and ⃦f ⃦ = 1. An operator-theoretic analogue of Rényi’s Condition is introduced. It is proved that under some additional assumptions this condition implies the L¹-convergence of the sequences (a) and (b) to a unique g₀ ∈ G. The general result is applied to some smooth Markov...

Invariant jets of a smooth dynamical system

Sophie Lemaire (2001)

Bulletin de la Société Mathématique de France

Similarity:

The local deformations of a submanifold under the effect of a smooth dynamical system are studied with the help of Oseledets’ multiplicative ergodic theorem. Equivalence classes of submanifolds, called jets, are introduced in order to describe these local deformations. They identify submanifolds having the same approximations up to some order at a given point. For every order k , a condition on the Lyapunov exponents of the dynamical system is established insuring the convergence of the...

Spectral radius of weighted composition operators in L p -spaces

Krzysztof Zajkowski (2010)

Studia Mathematica

Similarity:

We prove that for the spectral radius of a weighted composition operator a T α , acting in the space L p ( X , , μ ) , the following variational principle holds: l n r ( a T α ) = m a x ν M ¹ α , e X l n | a | d ν , where X is a Hausdorff compact space, α: X → X is a continuous mapping preserving a Borel measure μ with suppμ = X, M ¹ α , e is the set of all α-invariant ergodic probability measures on X, and a: X → ℝ is a continuous and -measurable function, where = n = 0 α - n ( ) . This considerably extends the range of validity of the above formula, which was previously known...

On the best observation of wave and Schrödinger equations in quantum ergodic billiards

Yannick Privat, Emmanuel Trélat, Enrique Zuazua (2012)

Journées Équations aux dérivées partielles

Similarity:

This paper is a proceedings version of the ongoing work [20], and has been the object of the talk of the second author at Journées EDP in 2012. In this work we investigate optimal observability properties for wave and Schrödinger equations considered in a bounded open set Ω n , with Dirichlet boundary conditions. The observation is done on a subset ω of Lebesgue measure | ω | = L | Ω | , where L ( 0 , 1 ) is fixed. We denote...

Invariance principle for the random conductance model with dynamic bounded conductances

Sebastian Andres (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study a continuous time random walk X in an environment of dynamic random conductances in d . We assume that the conductances are stationary ergodic, uniformly bounded and bounded away from zero and polynomially mixing in space and time. We prove a quenched invariance principle for X , and obtain Green’s functions bounds and a local limit theorem. We also discuss a connection to stochastic interface models.

Nonassociative triples in involutory loops and in loops of small order

Aleš Drápal, Jan Hora (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A loop of order n possesses at least 3 n 2 - 3 n + 1 associative triples. However, no loop of order n > 1 that achieves this bound seems to be known. If the loop is involutory, then it possesses at least 3 n 2 - 2 n associative triples. Involutory loops with 3 n 2 - 2 n associative triples can be obtained by prolongation of certain maximally nonassociative quasigroups whenever n - 1 is a prime greater than or equal to 13 or n - 1 = p 2 k , p an odd prime. For orders n 9 the minimum number of associative triples is reported for both general...

Geometric rigidity of × m invariant measures

Michael Hochman (2012)

Journal of the European Mathematical Society

Similarity:

Let μ be a probability measure on [ 0 , 1 ] which is invariant and ergodic for T a ( x ) = a x 𝚖𝚘𝚍 1 , and 0 < 𝚍𝚒𝚖 μ < 1 . Let f be a local diffeomorphism on some open set. We show that if E and ( f μ ) E μ E , then f ' ( x ) ± a r : r at μ -a.e. point x f - 1 E . In particular, if g is a piecewise-analytic map preserving μ then there is an open g -invariant set U containing supp μ such that g U is piecewise-linear with slopes which are rational powers of a . In a similar vein, for μ as above, if b is another integer and a , b are not powers of a common integer, and if ν is...

Matrix coefficients, counting and primes for orbits of geometrically finite groups

Amir Mohammadi, Hee Oh (2015)

Journal of the European Mathematical Society

Similarity:

Let G : = SO ( n , 1 ) and Γ ( n - 1 ) / 2 for n = 2 , 3 and when δ > n - 2 for n 4 , we obtain an effective archimedean counting result for a discrete orbit of Γ in a homogeneous space H G where H is the trivial group, a symmetric subgroup or a horospherical subgroup. More precisely, we show that for any effectively well-rounded family { T H G } of compact subsets, there exists η > 0 such that # [ e ] Γ T = ( T ) + O ( ( T ) 1 - η ) for an explicit measure on H G which depends on Γ . We also apply the affine sieve and describe the distribution of almost primes on orbits of Γ in arithmetic...

Rabinowitz Floer homology and symplectic homology

Kai Cieliebak, Urs Frauenfelder, Alexandru Oancea (2010)

Annales scientifiques de l'École Normale Supérieure

Similarity:

The first two authors have recently defined Rabinowitz Floer homology groups R F H * ( M , W ) associated to a separating exact embedding of a contact manifold ( M , ξ ) into a symplectic manifold ( W , ω ) . These depend only on the bounded component V of W M . We construct a long exact sequence in which symplectic cohomology of V maps to symplectic homology of V , which in turn maps to Rabinowitz Floer homology R F H * ( M , W ) , which then maps to symplectic cohomology of V . We compute R F H * ( S T * L , T * L ) , where S T * L is the unit cosphere bundle of a closed...