Displaying similar documents to “Resonant delocalization for random Schrödinger operators on tree graphs”

Graphs with small diameter determined by their D -spectra

Ruifang Liu, Jie Xue (2018)

Czechoslovak Mathematical Journal

Similarity:

Let G be a connected graph with vertex set V ( G ) = { v 1 , v 2 , ... , v n } . The distance matrix D ( G ) = ( d i j ) n × n is the matrix indexed by the vertices of G , where d i j denotes the distance between the vertices v i and v j . Suppose that λ 1 ( D ) λ 2 ( D ) λ n ( D ) are the distance spectrum of G . The graph G is said to be determined by its D -spectrum if with respect to the distance matrix D ( G ) , any graph having the same spectrum as G is isomorphic to G . We give the distance characteristic polynomial of some graphs with small diameter, and also prove that these graphs...

Subsets of nonempty joint spectrum in topological algebras

Antoni Wawrzyńczyk (2018)

Mathematica Bohemica

Similarity:

We give a necessary and a sufficient condition for a subset S of a locally convex Waelbroeck algebra 𝒜 to have a non-void left joint spectrum σ l ( S ) . In particular, for a Lie subalgebra L 𝒜 we have σ l ( L ) if and only if [ L , L ] generates in 𝒜 a proper left ideal. We also obtain a version of the spectral mapping formula for a modified left joint spectrum. Analogous theorems for the right joint spectrum and the Harte spectrum are also valid.

On the convergence and character spectra of compact spaces

István Juhász, William A. R. Weiss (2010)

Fundamenta Mathematicae

Similarity:

An infinite set A in a space X converges to a point p (denoted by A → p) if for every neighbourhood U of p we have |A∖U| < |A|. We call cS(p,X) = |A|: A ⊂ X and A → p the convergence spectrum of p in X and cS(X) = ⋃cS(x,X): x ∈ X the convergence spectrum of X. The character spectrum of a point p ∈ X is χS(p,X) = χ(p,Y): p is non-isolated in Y ⊂ X, and χS(X) = ⋃χS(x,X): x ∈ X is the character spectrum of X. If κ ∈ χS(p,X) for a compactum X then κ,cf(κ) ⊂ cS(p,X). A selection of our...

Simultaneous solutions of operator Sylvester equations

Sang-Gu Lee, Quoc-Phong Vu (2014)

Studia Mathematica

Similarity:

We consider simultaneous solutions of operator Sylvester equations A i X - X B i = C i (1 ≤ i ≤ k), where ( A , . . . , A k ) and ( B , . . . , B k ) are commuting k-tuples of bounded linear operators on Banach spaces and ℱ, respectively, and ( C , . . . , C k ) is a (compatible) k-tuple of bounded linear operators from ℱ to , and prove that if the joint Taylor spectra of ( A , . . . , A k ) and ( B , . . . , B k ) do not intersect, then this system of Sylvester equations has a unique simultaneous solution.

Borel parts of the spectrum of an operator and of the operator algebra of a separable Hilbert space

Piotr Niemiec (2012)

Studia Mathematica

Similarity:

For a linear operator T in a Banach space let σ p ( T ) denote the point spectrum of T, let σ p , n ( T ) for finite n > 0 be the set of all λ σ p ( T ) such that dim ker(T - λ) = n and let σ p , ( T ) be the set of all λ σ p ( T ) for which ker(T - λ) is infinite-dimensional. It is shown that σ p ( T ) is σ , σ p , ( T ) is σ δ and for each finite n the set σ p , n ( T ) is the intersection of an σ set and a δ set provided T is closable and the domain of T is separable and weakly σ-compact. For closed densely defined operators in a separable Hilbert space a more...

Horocyclic products of trees

Laurent Bartholdi, Markus Neuhauser, Wolfgang Woess (2008)

Journal of the European Mathematical Society

Similarity:

Let T 1 , , T d be homogeneous trees with degrees q 1 + 1 , , q d + 1 3 , respectively. For each tree, let 𝔥 : T j be the Busemann function with respect to a fixed boundary point (end). Its level sets are the horocycles. The horocyclic product of T 1 , , T d is the graph 𝖣𝖫 ( q 1 , , q d ) consisting of all d -tuples x 1 x d T 1 × × T d with 𝔥 ( x 1 ) + + 𝔥 ( x d ) = 0 , equipped with a natural neighbourhood relation. In the present paper, we explore the geometric, algebraic, analytic and probabilistic properties of these graphs and their isometry groups. If d = 2 and q 1 = q 2 = q then we obtain a Cayley graph...

The fan graph is determined by its signless Laplacian spectrum

Muhuo Liu, Yuan Yuan, Kinkar Chandra Das (2020)

Czechoslovak Mathematical Journal

Similarity:

Given a graph G , if there is no nonisomorphic graph H such that G and H have the same signless Laplacian spectra, then we say that G is Q -DS. In this paper we show that every fan graph F n is Q -DS, where F n = K 1 P n - 1 and n 3 .

A lower bound for the 3-pendant tree-connectivity of lexicographic product graphs

Yaping Mao, Christopher Melekian, Eddie Cheng (2023)

Czechoslovak Mathematical Journal

Similarity:

For a connected graph G = ( V , E ) and a set S V ( G ) with at least two vertices, an S -Steiner tree is a subgraph T = ( V ' , E ' ) of G that is a tree with S V ' . If the degree of each vertex of S in T is equal to 1, then T is called a pendant S -Steiner tree. Two S -Steiner trees are if they share no vertices other than S and have no edges in common. For S V ( G ) and | S | 2 , the pendant tree-connectivity τ G ( S ) is the maximum number of internally disjoint pendant S -Steiner trees in G , and for k 2 , the k -pendant tree-connectivity τ k ( G ) is the...

On a characterization of k -trees

De-Yan Zeng, Jian Hua Yin (2015)

Czechoslovak Mathematical Journal

Similarity:

A graph G is a k -tree if either G is the complete graph on k + 1 vertices, or G has a vertex v whose neighborhood is a clique of order k and the graph obtained by removing v from G is also a k -tree. Clearly, a k -tree has at least k + 1 vertices, and G is a 1-tree (usual tree) if and only if it is a 1 -connected graph and has no K 3 -minor. In this paper, motivated by some properties of 2-trees, we obtain a characterization of k -trees as follows: if G is a graph with at least k + 1 vertices, then G is...

Weighted Frobenius-Perron operators and their spectra

Mohammad Reza Jabbarzadeh, Rana Hajipouri (2017)

Mathematica Bohemica

Similarity:

First, some classic properties of a weighted Frobenius-Perron operator 𝒫 ϕ u on L 1 ( Σ ) as a predual of weighted Koopman operator W = u U ϕ on L ( Σ ) will be investigated using the language of the conditional expectation operator. Also, we determine the spectrum of 𝒫 ϕ u under certain conditions.

Size of the giant component in a random geometric graph

Ghurumuruhan Ganesan (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In this paper, we study the size of the giant component C G in the random geometric graph G = G ( n , r n , f ) of n nodes independently distributed each according to a certain density f ( · ) in [ 0 , 1 ] 2 satisfying inf x [ 0 , 1 ] 2 f ( x ) g t ; 0 . If c 1 n r n 2 c 2 log n n for some positive constants c 1 , c 2 and n r n 2 as n , we show that the giant component of G contains at least n - o ( n ) nodes with probability at least 1 - e - β n r n 2 for all n and for some positive constant β . We also obtain estimates on the diameter and number of the non-giant components of G .

A-Browder-type theorems for direct sums of operators

Mohammed Berkani, Mustapha Sarih, Hassan Zariouh (2016)

Mathematica Bohemica

Similarity:

We study the stability of a-Browder-type theorems for orthogonal direct sums of operators. We give counterexamples which show that in general the properties ( SBaw ) , ( SBab ) , ( SBw ) and ( SBb ) are not preserved under direct sums of operators. However, we prove that if S and T are bounded linear operators acting on Banach spaces and having the property ( SBab ) , then S T has the property ( SBab ) if and only if σ SBF + - ( S T ) = σ SBF + - ( S ) σ SBF + - ( T ) , where σ SBF + - ( T ) is the upper semi-B-Weyl spectrum of T . We obtain analogous preservation results for the properties ( SBaw ) ,...

The relation between the number of leaves of a tree and its diameter

Pu Qiao, Xingzhi Zhan (2022)

Czechoslovak Mathematical Journal

Similarity:

Let L ( n , d ) denote the minimum possible number of leaves in a tree of order n and diameter d . Lesniak (1975) gave the lower bound B ( n , d ) = 2 ( n - 1 ) / d for L ( n , d ) . When d is even, B ( n , d ) = L ( n , d ) . But when d is odd, B ( n , d ) is smaller than L ( n , d ) in general. For example, B ( 21 , 3 ) = 14 while L ( 21 , 3 ) = 19 . In this note, we determine L ( n , d ) using new ideas. We also consider the converse problem and determine the minimum possible diameter of a tree with given order and number of leaves.

On γ-labelings of trees

Gary Chartrand, David Erwin, Donald W. VanderJagt, Ping Zhang (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph of order n and size m. A γ-labeling of G is a one-to-one function f:V(G) → 0,1,2,...,m that induces a labeling f’: E(G) → 1,2,...,m of the edges of G defined by f’(e) = |f(u)-f(v)| for each edge e = uv of G. The value of a γ-labeling f is v a l ( f ) = Σ e E ( G ) f ' K ( e ) . The maximum value of a γ-labeling of G is defined as v a l m a x ( G ) = m a x v a l ( f ) : f i s a γ - l a b e l i n g o f G ; while the minimum value of a γ-labeling of G is v a l m i n ( G ) = m i n v a l ( f ) : f i s a γ - l a b e l i n g o f G ; The values v a l m a x ( S p , q ) and v a l m i n ( S p , q ) are determined for double stars S p , q . We present characterizations of connected graphs G of order n for which...