Displaying similar documents to “The Roquette category of finite p -groups”

On category 𝒪 for cyclotomic rational Cherednik algebras

Iain G. Gordon, Ivan Losev (2014)

Journal of the European Mathematical Society

Similarity:

We study equivalences for category 𝒪 p of the rational Cherednik algebras 𝐇 p of type G ( n ) = ( μ ) n 𝔖 n : a highest weight equivalence between 𝒪 p and 𝒪 σ ( p ) for σ 𝔖 and an action of 𝔖 on an explicit non-empty Zariski open set of parameters p ; a derived equivalence between 𝒪 p and 𝒪 p ' whenever p and p ' have integral difference; a highest weight equivalence between 𝒪 p and a parabolic category 𝒪 for the general linear group, under a non-rationality assumption on the parameter p . As a consequence, we confirm special cases...

Stable tubes in extriangulated categories

Li Wang, Jiaqun Wei, Haicheng Zhang (2022)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒳 be a semibrick in an extriangulated category. If 𝒳 is a τ -semibrick, then the Auslander-Reiten quiver Γ ( ( 𝒳 ) ) of the filtration subcategory ( 𝒳 ) generated by 𝒳 is 𝔸 . If 𝒳 = { X i } i = 1 t is a τ -cycle semibrick, then Γ ( ( 𝒳 ) ) is 𝔸 / τ 𝔸 t .

A note on infinite a S -groups

Reza Nikandish, Babak Miraftab (2015)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group. If every nontrivial subgroup of G has a proper supplement, then G is called an a S -group. We study some properties of a S -groups. For instance, it is shown that a nilpotent group G is an a S -group if and only if G is a subdirect product of cyclic groups of prime orders. We prove that if G is an a S -group which satisfies the descending chain condition on subgroups, then G is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group...

Cotorsion pairs in comma categories

Yuan Yuan, Jian He, Dejun Wu (2024)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒜 and be abelian categories with enough projective and injective objects, and T : 𝒜 a left exact additive functor. Then one has a comma category ( T ) . It is shown that if T : 𝒜 is 𝒳 -exact, then ( 𝒳 , 𝒳 ) is a (hereditary) cotorsion pair in 𝒜 and ( 𝒴 , 𝒴 ) ) is a (hereditary) cotorsion pair in if and only if 𝒳 𝒴 , 𝐡 ( 𝒳 , 𝒴 ) ) is a (hereditary) cotorsion pair in ( T ) and 𝒳 and 𝒴 are closed under extensions. Furthermore, we characterize when special preenveloping classes in abelian categories 𝒜 and can induce special preenveloping...

On almost complex structures from classical linear connections

Jan Kurek, Włodzimierz M. Mikulski (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let f m be the category of m -dimensional manifolds and local diffeomorphisms and  let T be the tangent functor on f m . Let 𝒱 be the category of real vector spaces and linear maps and let 𝒱 m be the category of m -dimensional real vector spaces and linear isomorphisms. We characterize all regular covariant functors F : 𝒱 m 𝒱 admitting f m -natural operators J ˜ transforming classical linear connections on m -dimensional manifolds M into almost complex structures J ˜ ( ) on F ( T ) M = x M F ( T x M ) .

The Ribes-Zalesskii property of some one relator groups

Gilbert Mantika, Narcisse Temate-Tangang, Daniel Tieudjo (2022)

Archivum Mathematicum

Similarity:

The profinite topology on any abstract group G , is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group G has the Ribes-Zalesskii property of rank k , or is RZ k with k a natural number, if any product H 1 H 2 H k of finitely generated subgroups H 1 , H 2 , , H k is closed in the profinite topology on G . And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ k for any natural number k . In this paper we characterize...

Finite groups whose all proper subgroups are 𝒞 -groups

Pengfei Guo, Jianjun Liu (2018)

Czechoslovak Mathematical Journal

Similarity:

A group G is said to be a 𝒞 -group if for every divisor d of the order of G , there exists a subgroup H of G of order d such that H is normal or abnormal in G . We give a complete classification of those groups which are not 𝒞 -groups but all of whose proper subgroups are 𝒞 -groups.

Recognizability of finite groups by Suzuki group

Alireza Khalili Asboei, Seyed Sadegh Salehi Amiri (2019)

Archivum Mathematicum

Similarity:

Let G be a finite group. The main supergraph 𝒮 ( G ) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o ( x ) o ( y ) or o ( y ) o ( x ) . In this paper, we will show that G S z ( q ) if and only if 𝒮 ( G ) 𝒮 ( S z ( q ) ) , where q = 2 2 m + 1 8 .

Several quantitative characterizations of some specific groups

A. Mohammadzadeh, Ali Reza Moghaddamfar (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group and let π ( G ) = { p 1 , p 2 , ... , p k } be the set of prime divisors of | G | for which p 1 < p 2 < < p k . The Gruenberg-Kegel graph of G , denoted GK ( G ) , is defined as follows: its vertex set is π ( G ) and two different vertices p i and p j are adjacent by an edge if and only if G contains an element of order p i p j . The degree of a vertex p i in GK ( G ) is denoted by d G ( p i ) and the k -tuple D ( G ) = ( d G ( p 1 ) , d G ( p 2 ) , ... , d G ( p k ) ) is said to be the degree pattern of G . Moreover, if ω π ( G ) is the vertex set of a connected component of GK ( G ) , then the largest ω -number which divides | G | , is...

Limits and colimits in certain categories of spaces of continuous functions

Marvin W. Grossman

Similarity:

CONTENTSIntroduction................................................................................................................................................................................5§ 1. Notation and preliminaries.............................................................................................................................................6§ 2. Epimorphisms and monomorphisms.........................................................................................................................7§...