Displaying similar documents to “On q-orders in primitive modular groups”

On the Euler Function on Differences Between the Coordinates of Points on Modular Hyperbolas

Igor E. Shparlinski (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

For a prime p > 2, an integer a with gcd(a,p) = 1 and real 1 ≤ X,Y < p, we consider the set of points on the modular hyperbola a , p ( X , Y ) = ( x , y ) : x y a ( m o d p ) , 1 x X , 1 y Y . We give asymptotic formulas for the average values ( x , y ) a , p ( X , Y ) x y * φ ( | x - y | ) / | x - y | and ( x , y ) a , p ( X , X ) x y * φ ( | x - y | ) with the Euler function φ(k) on the differences between the components of points of a , p ( X , Y ) .

Self-intersection of the relative dualizing sheaf on modular curves X 1 ( N )

Hartwig Mayer (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let N be an odd and squarefree positive integer divisible by at least two relative prime integers bigger or equal than 4 . Our main theorem is an asymptotic formula solely in terms of N for the stable arithmetic self-intersection number of the relative dualizing sheaf for modular curves X 1 ( N ) / . From our main theorem we obtain an asymptotic formula for the stable Faltings height of the Jacobian J 1 ( N ) / of X 1 ( N ) / , and, for sufficiently large N , an effective version of Bogomolov’s conjecture for X 1 ( N ) / . ...

Group algebras whose groups of normalized units have exponent 4

Victor Bovdi, Mohammed Salim (2018)

Czechoslovak Mathematical Journal

Similarity:

We give a full description of locally finite 2 -groups G such that the normalized group of units of the group algebra F G over a field F of characteristic 2 has exponent 4 .

Generalized divisor problem for new forms of higher level

Krishnarjun Krishnamoorthy (2022)

Czechoslovak Mathematical Journal

Similarity:

Suppose that f is a primitive Hecke eigenform or a Mass cusp form for Γ 0 ( N ) with normalized eigenvalues λ f ( n ) and let X > 1 be a real number. We consider the sum 𝒮 k ( X ) : = n < X n = n 1 , n 2 , ... , n k λ f ( n 1 ) λ f ( n 2 ) ... λ f ( n k ) and show that 𝒮 k ( X ) f , ϵ X 1 - 3 / ( 2 ( k + 3 ) ) + ϵ for every k 1 and ϵ > 0 . The same problem was considered for the case N = 1 , that is for the full modular group in Lü (2012) and Kanemitsu et al. (2002). We consider the problem in a more general setting and obtain bounds which are better than those obtained by the classical result of Landau (1915) for k 5 . Since the result is valid...

On sum-product representations in q

Mei-Chu Chang (2006)

Journal of the European Mathematical Society

Similarity:

The purpose of this paper is to investigate efficient representations of the residue classes modulo q , by performing sum and product set operations starting from a given subset A of q . We consider the case of very small sets A and composite q for which not much seemed known (nontrivial results were recently obtained when q is prime or when log | A | log q ). Roughly speaking we show that all residue classes are obtained from a k -fold sum of an r -fold product set of A , where r log q and log k log q , provided the...

Direct summands of Goldie extending elements in modular lattices

Rupal Shroff (2022)

Mathematica Bohemica

Similarity:

In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element a of a lattice L with 0 is said to be a Goldie extending element if and only if for every b a there exists a direct summand c of a such that b c is essential in both b and c . Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained.

Weight reduction for cohomological mod p modular forms over imaginary quadratic fields

Adam Mohamed (2014)

Publications mathématiques de Besançon

Similarity:

Let F be an imaginary quadratic field and 𝒪 its ring of integers. Let 𝔫 𝒪 be a non-zero ideal and let p &gt; 5 be a rational inert prime in F and coprime with 𝔫 . Let V be an irreducible finite dimensional representation of 𝔽 ¯ p [ GL 2 ( 𝔽 p 2 ) ] . We establish that a system of Hecke eigenvalues appearing in the cohomology with coefficients in V already lives in the cohomology with coefficients in 𝔽 ¯ p d e t e for some e 0 ; except possibly in some few cases.

On the least almost-prime in arithmetic progressions

Liuying Wu (2024)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒫 2 denote a positive integer with at most 2 prime factors, counted according to multiplicity. For integers a , q such that ( a , q ) = 1 , let 𝒫 2 ( q , a ) denote the least 𝒫 2 in the arithmetic progression { n q + a } n = 1 . It is proved that for sufficiently large q , we have 𝒫 2 ( q , a ) q 1 . 825 . This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained 𝒫 2 ( q , a ) q 1 . 8345 .

On the least almost-prime in arithmetic progression

Jinjiang Li, Min Zhang, Yingchun Cai (2023)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒫 r denote an almost-prime with at most r prime factors, counted according to multiplicity. Suppose that a and q are positive integers satisfying ( a , q ) = 1 . Denote by 𝒫 2 ( a , q ) the least almost-prime 𝒫 2 which satisfies 𝒫 2 a ( mod q ) . It is proved that for sufficiently large q , there holds 𝒫 2 ( a , q ) q 1 . 8345 . This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same conclusion, but for the range 1 . 845 in place of 1 . 8345 .