Displaying similar documents to “Interpolating sequences, Carleson measures and Wirtinger inequality”

On linear extension for interpolating sequences

Eric Amar (2008)

Studia Mathematica

Similarity:

Let A be a uniform algebra on X and σ a probability measure on X. We define the Hardy spaces H p ( σ ) and the H p ( σ ) interpolating sequences S in the p-spectrum p of σ. We prove, under some structural hypotheses on A and σ, that if S is a “dual bounded” Carleson sequence, then S is H s ( σ ) -interpolating with a linear extension operator for s < p, provided that either p = ∞ or p ≤ 2. In the case of the unit ball of ℂⁿ we find, for instance, that if S is dual bounded in H ( ) then S is H p ( ) -interpolating with...

Characteristic points, rectifiability and perimeter measure on stratified groups

Valentino Magnani (2006)

Journal of the European Mathematical Society

Similarity:

We establish an explicit connection between the perimeter measure of an open set E with C 1 boundary and the spherical Hausdorff measure S Q 1 restricted to E , when the ambient space is a stratified group endowed with a left invariant sub-Riemannian metric and Q denotes the Hausdorff dimension of the group. Our formula implies that the perimeter measure of E is less than or equal to S Q 1 ( E ) up to a dimensional factor. The validity of this estimate positively answers a conjecture raised by Danielli,...

Osgood type conditions for an m th-order differential equation

Stanisaw Szufla (1998)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We present a new theorem on the differential inequality u ( m ) w ( u ) . Next, we apply this result to obtain existence theorems for the equation x ( m ) = f ( t , x ) .

Measure-geometric Laplacians for partially atomic measures

Marc Kesseböhmer, Tony Samuel, Hendrik Weyer (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Motivated by the fundamental theorem of calculus, and based on the works of W. Feller as well as M. Kac and M. G. Kreĭn, given an atomless Borel probability measure η supported on a compact subset of U. Freiberg and M. Zähle introduced a measure-geometric approach to define a first order differential operator η and a second order differential operator Δ η , with respect to η . We generalize this approach to measures of the form η : = ν + δ , where ν is non-atomic and δ is finitely supported. We determine...

A Hankel matrix acting on Hardy and Bergman spaces

Petros Galanopoulos, José Ángel Peláez (2010)

Studia Mathematica

Similarity:

Let μ be a finite positive Borel measure on [0,1). Let μ = ( μ n , k ) n , k 0 be the Hankel matrix with entries μ n , k = [ 0 , 1 ) t n + k d μ ( t ) . The matrix μ induces formally an operator on the space of all analytic functions in the unit disc by the fomula μ ( f ) ( z ) = n = 0 i ( k = 0 μ n , k a k ) z , z ∈ , where f ( z ) = n = 0 a z is an analytic function in . We characterize those positive Borel measures on [0,1) such that μ ( f ) ( z ) = [ 0 , 1 ) f ( t ) / ( 1 - t z ) d μ ( t ) for all f in the Hardy space H¹, and among them we describe those for which μ is bounded and compact on H¹. We also study the analogous problem for the Bergman space A². ...

On the characterization of harmonic functions with initial data in Morrey space

Bo Li, Jinxia Li, Bolin Ma, Tianjun Shen (2024)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , d , μ ) be a metric measure space satisfying the doubling condition and an L 2 -Poincaré inequality. Consider the nonnegative operator generalized by a Dirichlet form on X . We will show that a solution u to ( - t 2 + ) u = 0 on X × + satisfies an α -Carleson condition if and only if u can be represented as the Poisson integral of the operator with the trace in the generalized Morrey space L 2 , α ( X ) , where α is a nonnegative function defined on a class of balls in X . This result extends the analogous characterization...

Generalized Lebesgue points for Sobolev functions

Nijjwal Karak (2017)

Czechoslovak Mathematical Journal

Similarity:

In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point x in a metric measure space ( X , d , μ ) is called a generalized Lebesgue point of a measurable function f if the medians of f over the balls B ( x , r ) converge to f ( x ) when r converges to 0 . We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function....

Asymptotic nature of higher Mahler measure

(2014)

Acta Arithmetica

Similarity:

We consider Akatsuka’s zeta Mahler measure as a generating function of the higher Mahler measure m k ( P ) of a polynomial P , where m k ( P ) is the integral of l o g k | P | over the complex unit circle. Restricting ourselves to P(x) = x - r with |r| = 1 we show some new asymptotic results regarding m k ( P ) , in particular | m k ( P ) | / k ! 1 / π as k → ∞.

Convolution operators with anisotropically homogeneous measures on 2 n with n-dimensional support

E. Ferreyra, T. Godoy, M. Urciuolo (2002)

Colloquium Mathematicae

Similarity:

Let α i , β i > 0 , 1 ≤ i ≤ n, and for t > 0 and x = (x₁,...,xₙ) ∈ ℝⁿ, let t x = ( t α x , . . . , t α x ) , t x = ( t β x , . . . , t β x ) and | | x | | = i = 1 n | x i | 1 / α i . Let φ₁,...,φₙ be real functions in C ( - 0 ) such that φ = (φ₁,..., φₙ) satisfies φ(t • x) = t ∘ φ(x). Let γ > 0 and let μ be the Borel measure on 2 n given by μ ( E ) = χ E ( x , φ ( x ) ) | | x | | γ - α d x , where α = i = 1 n α i and dx denotes the Lebesgue measure on ℝⁿ. Let T μ f = μ f and let | | T μ | | p , q be the operator norm of T μ from L p ( 2 n ) into L q ( 2 n ) , where the L p spaces are taken with respect to the Lebesgue measure. The type set E μ is defined by E μ = ( 1 / p , 1 / q ) : | | T μ | | p , q < , 1 p , q . In the case α i β k for 1 ≤ i,k ≤ n we characterize the...

Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces

Xuefang Yan (2015)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , d , μ ) be a metric measure space endowed with a distance d and a nonnegative Borel doubling measure μ . Let L be a non-negative self-adjoint operator of order m on L 2 ( X ) . Assume that the semigroup e - t L generated by L satisfies the Davies-Gaffney estimate of order m and L satisfies the Plancherel type estimate. Let H L p ( X ) be the Hardy space associated with L . We show the boundedness of Stein’s square function 𝒢 δ ( L ) arising from Bochner-Riesz means associated to L from Hardy spaces H L p ( X ) to L p ( X ) , and also study...

Geometric rigidity of × m invariant measures

Michael Hochman (2012)

Journal of the European Mathematical Society

Similarity:

Let μ be a probability measure on [ 0 , 1 ] which is invariant and ergodic for T a ( x ) = a x 𝚖𝚘𝚍 1 , and 0 < 𝚍𝚒𝚖 μ < 1 . Let f be a local diffeomorphism on some open set. We show that if E and ( f μ ) E μ E , then f ' ( x ) ± a r : r at μ -a.e. point x f - 1 E . In particular, if g is a piecewise-analytic map preserving μ then there is an open g -invariant set U containing supp μ such that g U is piecewise-linear with slopes which are rational powers of a . In a similar vein, for μ as above, if b is another integer and a , b are not powers of a common integer, and if ν is...

Relations between Shy Sets and Sets of ν p -Measure Zero in Solovay’s Model

G. Pantsulaia (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

An example of a non-zero non-atomic translation-invariant Borel measure ν p on the Banach space p ( 1 p ) is constructed in Solovay’s model. It is established that, for 1 ≤ p < ∞, the condition " ν p -almost every element of p has a property P" implies that “almost every” element of p (in the sense of [4]) has the property P. It is also shown that the converse is not valid.

Bounded evaluation operators from H p into q

Martin Smith (2007)

Studia Mathematica

Similarity:

Given 0 < p,q < ∞ and any sequence z = zₙ in the unit disc , we define an operator from functions on to sequences by T z , p ( f ) = ( 1 - | z | ² ) 1 / p f ( z ) . Necessary and sufficient conditions on zₙ are given such that T z , p maps the Hardy space H p boundedly into the sequence space q . A corresponding result for Bergman spaces is also stated.

Denseness and Borel complexity of some sets of vector measures

Zbigniew Lipecki (2004)

Studia Mathematica

Similarity:

Let ν be a positive measure on a σ-algebra Σ of subsets of some set and let X be a Banach space. Denote by ca(Σ,X) the Banach space of X-valued measures on Σ, equipped with the uniform norm, and by ca(Σ,ν,X) its closed subspace consisting of those measures which vanish at every ν-null set. We are concerned with the subsets ν ( X ) and ν ( X ) of ca(Σ,X) defined by the conditions |φ| = ν and |φ| ≥ ν, respectively, where |φ| stands for the variation of φ ∈ ca(Σ,X). We establish necessary and sufficient...

Approximation properties of β-expansions

Simon Baker (2015)

Acta Arithmetica

Similarity:

Let β ∈ (1,2) and x ∈ [0,1/(β-1)]. We call a sequence ( ϵ i ) i = 1 0 , 1 a β-expansion for x if x = i = 1 ϵ i β - i . We call a finite sequence ( ϵ i ) i = 1 n 0 , 1 n an n-prefix for x if it can be extended to form a β-expansion of x. In this paper we study how good an approximation is provided by the set of n-prefixes. Given Ψ : 0 , we introduce the following subset of ℝ: W β ( Ψ ) : = m = 1 n = m ( ϵ i ) i = 1 n 0 , 1 n [ i = 1 n ( ϵ i ) / ( β i ) , i = 1 n ( ϵ i ) / ( β i ) + Ψ ( n ) ] In other words, W β ( Ψ ) is the set of x ∈ ℝ for which there exist infinitely many solutions to the inequalities 0 x - i = 1 n ( ϵ i ) / ( β i ) Ψ ( n ) . When n = 1 2 n Ψ ( n ) < , the Borel-Cantelli lemma tells us that the Lebesgue measure...

Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps

Viviane Baladi, Daniel Smania (2012)

Annales scientifiques de l'École Normale Supérieure

Similarity:

We consider C 2 families t f t of  C 4 unimodal maps f t whose critical point is slowly recurrent, and we show that the unique absolutely continuous invariant measure μ t of  f t depends differentiably on  t , as a distribution of order 1 . The proof uses transfer operators on towers whose level boundaries are mollified via smooth cutoff functions, in order to avoid artificial discontinuities. We give a new representation of  μ t for a Benedicks-Carleson map f t , in terms of a single smooth function and the...

Invariant densities for random β -expansions

Karma Dajani, Martijn de Vries (2007)

Journal of the European Mathematical Society

Similarity:

Let β > 1 be a non-integer. We consider expansions of the form i = 1 d i / β i , where the digits ( d i ) i 1 are generated by means of a Borel map K β defined on { 0 , 1 } × [ 0 , β ( β 1 ) ] . We show existence and uniqueness of a K β -invariant probability measure, absolutely continuous with respect to m p λ , where m p is the Bernoulli measure on { 0 , 1 } with parameter p ( 0 < p < 1 ) and λ is the normalized Lebesgue measure on [ 0 , β ( β 1 ) ] . Furthermore, this measure is of the form m p μ β , p , where μ β , p is equivalent to λ . We prove that the measure of maximal entropy and m p λ are mutually...