The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Flatness testing over singular bases”

Testing flatness and computing rank of a module using syzygies

Oswaldo Lezama (2009)

Colloquium Mathematicae

Similarity:

Using syzygies computed via Gröbner bases techniques, we present algorithms for testing some homological properties for submodules of the free module A m , where A = R[x₁,...,xₙ] and R is a Noetherian commutative ring. We will test if a given submodule M of A m is flat. We will also check if M is locally free of constant dimension. Moreover, we present an algorithm that computes the rank of a flat submodule M of A m and also an algorithm that computes the projective dimension of an arbitrary...

Structure of flat covers of injective modules

Sh. Payrovi, M. Akhavizadegan (2003)

Colloquium Mathematicae

Similarity:

The aim of this paper is to discuss the flat covers of injective modules over a Noetherian ring. Let R be a commutative Noetherian ring and let E be an injective R-module. We prove that the flat cover of E is isomorphic to p A t t R ( E ) T p . As a consequence, we give an answer to Xu’s question [10, 4.4.9]: for a prime ideal p, when does T p appear in the flat cover of E(R/m̲)?

A Generalization of Baer's Lemma

Molly Dunkum (2009)

Czechoslovak Mathematical Journal

Similarity:

There is a classical result known as Baer’s Lemma that states that an R -module E is injective if it is injective for R . This means that if a map from a submodule of R , that is, from a left ideal L of R to E can always be extended to R , then a map to E from a submodule A of any R -module B can be extended to B ; in other words, E is injective. In this paper, we generalize this result to the category q ω consisting of the representations of an infinite line quiver. This generalization of Baer’s...

Characterizations of incidence modules

Naseer Ullah, Hailou Yao, Qianqian Yuan, Muhammad Azam (2024)

Czechoslovak Mathematical Journal

Similarity:

Let R be an associative ring and M be a left R -module. We introduce the concept of the incidence module I ( X , M ) of a locally finite partially ordered set X over M . We study the properties of I ( X , M ) and give the necessary and sufficient conditions for the incidence module to be an IN-module, -module, nil injective module and nonsingular module, respectively. Furthermore, we show that the class of -modules is closed under direct product and upper triangular matrix modules.

Derived dimension via τ -tilting theory

Yingying Zhang (2021)

Czechoslovak Mathematical Journal

Similarity:

Comparing the bounded derived categories of an algebra and of the endomorphism algebra of a given support τ -tilting module, we find a relation between the derived dimensions of an algebra and of the endomorphism algebra of a given τ -tilting module.

Some results on G C -flat dimension of modules

Ramalingam Udhayakumar, Intan Muchtadi-Alamsyah, Chelliah Selvaraj (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we study some properties of G C -flat R -modules, where C is a semidualizing module over a commutative ring R and we investigate the relation between the G C -yoke with the C -yoke of a module as well as the relation between the G C -flat resolution and the flat resolution of a module over G F -closed rings. We also obtain a criterion for computing the G C -flat dimension of modules.

On generalized CS-modules

Qingyi Zeng (2015)

Czechoslovak Mathematical Journal

Similarity:

An 𝒮 -closed submodule of a module M is a submodule N for which M / N is nonsingular. A module M is called a generalized CS-module (or briefly, GCS-module) if any 𝒮 -closed submodule N of M is a direct summand of M . Any homomorphic image of a GCS-module is also a GCS-module. Any direct sum of a singular (uniform) module and a semi-simple module is a GCS-module. All nonsingular right R -modules are projective if and only if all right R -modules are GCS-modules.

Some module cohomological properties of Banach algebras

Elham Ilka, Amin Mahmoodi, Abasalt Bodaghi (2020)

Mathematica Bohemica

Similarity:

We find some relations between module biprojectivity and module biflatness of Banach algebras 𝒜 and and their projective tensor product 𝒜 ^ . For some semigroups S , we study module biprojectivity and module biflatness of semigroup algebras l 1 ( S ) .

Relative Gorenstein injective covers with respect to a semidualizing module

Elham Tavasoli, Maryam Salimi (2017)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring and let C be a semidualizing R -module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to C which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every G C -injective module G , the character module G + is G C -flat, then the class 𝒢ℐ C ( R ) 𝒜 C ( R ) is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class 𝒢ℐ C ( R ) 𝒜 C ( R ) ...