Displaying similar documents to “Two remarks on the Suita conjecture”

On the generalized vanishing conjecture

Zhenzhen Feng, Xiaosong Sun (2019)

Czechoslovak Mathematical Journal

Similarity:

We show that the GVC (generalized vanishing conjecture) holds for the differential operator Λ = ( x - Φ ( y ) ) y and all polynomials P ( x , y ) , where Φ ( t ) is any polynomial over the base field. The GVC arose from the study of the Jacobian conjecture.

A proof of the Grünbaum conjecture

Bruce L. Chalmers, Grzegorz Lewicki (2010)

Studia Mathematica

Similarity:

Let V be an n-dimensional real Banach space and let λ(V) denote its absolute projection constant. For any N ∈ N with N ≥ n define λ N = s u p λ ( V ) : d i m ( V ) = n , V l ( N ) , λₙ = supλ(V): dim(V) = n. A well-known Grünbaum conjecture [Trans. Amer. Math. Soc. 95 (1960)] says that λ₂ = 4/3. König and Tomczak-Jaegermann [J. Funct. Anal. 119 (1994)] made an attempt to prove this conjecture. Unfortunately, their Proposition 3.1, used in the proof, is incorrect. In this paper a complete proof of the Grünbaum conjecture is presented ...

Order of the smallest counterexample to Gallai's conjecture

Fuyuan Chen (2018)

Czechoslovak Mathematical Journal

Similarity:

In 1966, Gallai conjectured that all the longest paths of a connected graph have a common vertex. Zamfirescu conjectured that the smallest counterexample to Gallai’s conjecture is a graph on 12 vertices. We prove that Gallai’s conjecture is true for every connected graph G with α ' ( G ) 5 , which implies that Zamfirescu’s conjecture is true.

The strength of the projective Martin conjecture

C. T. Chong, Wei Wang, Liang Yu (2010)

Fundamenta Mathematicae

Similarity:

We show that Martin’s conjecture on Π¹₁ functions uniformly T -order preserving on a cone implies Π¹₁ Turing Determinacy over ZF + DC. In addition, it is also proved that for n ≥ 0, this conjecture for uniformly degree invariant Π ¹ 2 n + 1 functions is equivalent over ZFC to Σ ¹ 2 n + 2 -Axiom of Determinacy. As a corollary, the consistency of the conjecture for uniformly degree invariant Π¹₁ functions implies the consistency of the existence of a Woodin cardinal.

L ² h -domains of holomorphy and the Bergman kernel

Peter Pflug, Włodzimierz Zwonek (2002)

Studia Mathematica

Similarity:

We give a characterization of L ² h -domains of holomorphy with the help of the boundary behavior of the Bergman kernel and geometric properties of the boundary, respectively.

Dissipative Euler flows and Onsager's conjecture

Camillo De Lellis, László Székelyhidi (2014)

Journal of the European Mathematical Society

Similarity:

Building upon the techniques introduced in [15], for any θ < 1 10 we construct periodic weak solutions of the incompressible Euler equations which dissipate the total kinetic energy and are Hölder-continuous with exponent θ . A famous conjecture of Onsager states the existence of such dissipative solutions with any Hölder exponent θ < 1 3 . Our theorem is the first result in this direction.

On the Brocard-Ramanujan problem and generalizations

Andrzej Dąbrowski (2012)

Colloquium Mathematicae

Similarity:

Let p i denote the ith prime. We conjecture that there are precisely 28 solutions to the equation n ² - 1 = p α p k α k in positive integers n and α₁,..., α k . This conjecture implies an explicit description of the set of solutions to the Brocard-Ramanujan equation. We also propose another variant of the Brocard-Ramanujan problem: describe the set of solutions in non-negative integers of the equation n! + A = x₁²+x₂²+x₃² (A fixed).

A geometric construction for spectrally arbitrary sign pattern matrices and the 2 n -conjecture

Dipak Jadhav, Rajendra Deore (2023)

Czechoslovak Mathematical Journal

Similarity:

We develop a geometric method for studying the spectral arbitrariness of a given sign pattern matrix. The method also provides a computational way of computing matrix realizations for a given characteristic polynomial. We also provide a partial answer to 2 n -conjecture. We determine that the 2 n -conjecture holds for the class of spectrally arbitrary patterns that have a column or row with at least n - 1 nonzero entries.

On a number theoretic conjecture on positive integral points in a 5-dimensional tetrahedron and a sharp estimate of the Dickman–De Bruijn function

Ke-Pao Lin, Xue Luo, Stephen S.-T. Yau, Huaiqing Zuo (2014)

Journal of the European Mathematical Society

Similarity:

It is well known that getting the estimate of integral points in right-angled simplices is equivalent to getting the estimate of Dickman-De Bruijn function ψ ( x , y ) which is the number of positive integers x and free of prime factors > y . Motivating from the Yau Geometry Conjecture, the third author formulated the Number Theoretic Conjecture which gives a sharp polynomial upper estimate that counts the number of positive integral points in n-dimensional ( n 3 ) real right-angled simplices. In this...

Semifields and a theorem of Abhyankar

Vítězslav Kala (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Abhyankar proved that every field of finite transcendence degree over or over a finite field is a homomorphic image of a subring of the ring of polynomials [ T 1 , , T n ] (for some n depending on the field). We conjecture that his result cannot be substantially strengthened and show that our conjecture implies a well-known conjecture on the additive idempotence of semifields that are finitely generated as semirings.

A proof of the Livingston conjecture for the fourth and the fifth coefficient of concave univalent functions

Karl-Joachim Wirths (2004)

Annales Polonici Mathematici

Similarity:

Let D denote the open unit disc and f:D → ℂ̅ be meromorphic and injective in D. We further assume that f has a simple pole at the point p ∈ (0,1) and an expansion f ( z ) = z + n = 2 a ( f ) z , |z| < p. In particular, we consider f that map D onto a domain whose complement with respect to ℂ̅ is convex. Because of the shape of f(D) these functions will be called concave univalent functions with pole p and the family of these functions is denoted by Co(p). It is proved that for p ∈ (0,1) the domain of variability...

Homotopy invariance of higher signatures and 3 -manifold groups

Michel Matthey, Hervé Oyono-Oyono, Wolfgang Pitsch (2008)

Bulletin de la Société Mathématique de France

Similarity:

For closed oriented manifolds, we establish oriented homotopy invariance of higher signatures that come from the fundamental group of a large class of orientable 3 -manifolds, including the “piecewise geometric” ones in the sense of Thurston. In particular, this class, that will be carefully described, is the class of all orientable 3 -manifolds if the Thurston Geometrization Conjecture is true. In fact, for this type of groups, we show that the Baum-Connes Conjecture With Coefficients...

On boundary behaviour of the Bergman projection on pseudoconvex domains

M. Jasiczak (2005)

Studia Mathematica

Similarity:

It is shown that on strongly pseudoconvex domains the Bergman projection maps a space L v k of functions growing near the boundary like some power of the Bergman distance from a fixed point into a space of functions which can be estimated by the consecutive power of the Bergman distance. This property has a local character. Let Ω be a bounded, pseudoconvex set with C³ boundary. We show that if the Bergman projection is continuous on a space E L ( Ω ) defined by weighted-sup seminorms and equipped...

The Cohen-Lenstra heuristics, moments and p j -ranks of some groups

Christophe Delaunay, Frédéric Jouhet (2014)

Acta Arithmetica

Similarity:

This article deals with the coherence of the model given by the Cohen-Lenstra heuristic philosophy for class groups and also for their generalizations to Tate-Shafarevich groups. More precisely, our first goal is to extend a previous result due to É. Fouvry and J. Klüners which proves that a conjecture provided by the Cohen-Lenstra philosophy implies another such conjecture. As a consequence of our work, we can deduce, for example, a conjecture for the probability laws of p j -ranks of...

Results related to Huppert’s ρ - σ conjecture

Xia Xu, Yong Yang (2023)

Czechoslovak Mathematical Journal

Similarity:

We improve a few results related to Huppert’s ρ - σ conjecture. We also generalize a result about the covering number of character degrees to arbitrary finite groups.

Width asymptotics for a pair of Reinhardt domains

A. Aytuna, A. Rashkovskii, V. Zahariuta (2002)

Annales Polonici Mathematici

Similarity:

For complete Reinhardt pairs “compact set - domain” K ⊂ D in ℂⁿ, we prove Zahariuta’s conjecture about the exact asymptotics l n d s ( A K D ) - ( ( n ! s ) / τ ( K , D ) ) 1 / n , s → ∞, for the Kolmogorov widths d s ( A K D ) of the compact set in C(K) consisting of all analytic functions in D with moduli not exceeding 1 in D, τ(K,D) being the condenser pluricapacity of K with respect to D.

Recent progress on the Jacobian Conjecture

Michiel de Bondt, Arno van den Essen (2005)

Annales Polonici Mathematici

Similarity:

We describe some recent developments concerning the Jacobian Conjecture (JC). First we describe Drużkowski’s result in [6] which asserts that it suffices to study the JC for Drużkowski mappings of the form x + ( A x ) * 3 with A² = 0. Then we describe the authors’ result of [2] which asserts that it suffices to study the JC for so-called gradient mappings, i.e. mappings of the form x - ∇f, with f k [ n ] homogeneous of degree 4. Using this result we explain Zhao’s reformulation of the JC which asserts the...

Finite-dimensional spaces in resolving classes

Jeffrey Strom (2012)

Fundamenta Mathematicae

Similarity:

Using the theory of resolving classes, we show that if X is a CW complex of finite type such that m a p ( X , S 2 n + 1 ) for all sufficiently large n, then map⁎(X,K) ∼ ∗ for every simply-connected finite-dimensional CW complex K; and under mild hypotheses on π₁(X), the same conclusion holds for all finite-dimensional complexes K. Since it is comparatively easy to prove the former condition for X = Bℤ/p (we give a proof in an appendix), this result can be applied to give a new, more elementary proof of the...

A counterexample to a conjecture of Bass, Connell and Wright

Piotr Ossowski (1998)

Colloquium Mathematicae

Similarity:

Let F=X-H: k n k n be a polynomial map with H homogeneous of degree 3 and nilpotent Jacobian matrix J(H). Let G=(G1,...,Gn) be the formal inverse of F. Bass, Connell and Wright proved in [1] that the homogeneous component of G i of degree 2d+1 can be expressed as G i ( d ) = T α ( T ) - 1 σ i ( T ) , where T varies over rooted trees with d vertices, α(T)=CardAut(T) and σ i ( T ) is a polynomial defined by (1) below. The Jacobian Conjecture states that, in our situation, F is an automorphism or, equivalently, G i ( d ) is zero for sufficiently...