Displaying similar documents to “Weak Type Inequality for the Square Function of a Nonnegative Submartingale”

A Weak-Type Inequality for Submartingales and Itô Processes

Adam Osękowski (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let α ∈ [0,1] be a fixed parameter. We show that for any nonnegative submartingale X and any semimartingale Y which is α-subordinate to X, we have the sharp estimate Y W ( 2 ( α + 1 ) ² ) / ( 2 α + 1 ) X L . Here W is the weak- L space introduced by Bennett, DeVore and Sharpley. The inequality is already sharp in the context of α-subordinate Itô processes.

A uniqueness result for the continuity equation in two dimensions

Giovanni Alberti, Stefano Bianchini, Gianluca Crippa (2014)

Journal of the European Mathematical Society

Similarity:

We characterize the autonomous, divergence-free vector fields b on the plane such that the Cauchy problem for the continuity equation t u + . ˙ ( b u ) = 0 admits a unique bounded solution (in the weak sense) for every bounded initial datum; the characterization is given in terms of a property of Sard type for the potential f associated to b . As a corollary we obtain uniqueness under the assumption that the curl of b is a measure. This result can be extended to certain non-autonomous vector fields b with...

Generalization of the weak amenability on various Banach algebras

Madjid Eshaghi Gordji, Ali Jabbari, Abasalt Bodaghi (2019)

Mathematica Bohemica

Similarity:

The generalized notion of weak amenability, namely ( ϕ , ψ ) -weak amenability, where ϕ , ψ are continuous homomorphisms on a Banach algebra 𝒜 , was introduced by Bodaghi, Eshaghi Gordji and Medghalchi (2009). In this paper, the ( ϕ , ψ ) -weak amenability on the measure algebra M ( G ) , the group algebra L 1 ( G ) and the Segal algebra S 1 ( G ) , where G is a locally compact group, are studied. As a typical example, the ( ϕ , ψ ) -weak amenability of a special semigroup algebra is shown as well.

On the condition of Λ-convexity in some problems of weak continuity and weak lower semicontinuity

Agnieszka Kałamajska (2001)

Colloquium Mathematicae

Similarity:

We study the functional I f ( u ) = Ω f ( u ( x ) ) d x , where u=(u₁, ..., uₘ) and each u j is constant along some subspace W j of ℝⁿ. We show that if intersections of the W j ’s satisfy a certain condition then I f is weakly lower semicontinuous if and only if f is Λ-convex (see Definition 1.1 and Theorem 1.1). We also give a necessary and sufficient condition on W j j = 1 , . . . , m to have the equivalence: I f is weakly continuous if and only if f is Λ-affine.

The subspace of weak P -points of *

Salvador García-Ferreira, Y. F. Ortiz-Castillo (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let W be the subspace of * consisting of all weak P -points. It is not hard to see that W is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that W is a p -pseudocompact space for all p * .

Sharp Weak-Type Inequality for the Haar System, Harmonic Functions and Martingales

Adam Osękowski (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let ( h k ) k 0 be the Haar system on [0,1]. We show that for any vectors a k from a separable Hilbert space and any ε k [ - 1 , 1 ] , k = 0,1,2,..., we have the sharp inequality | | k = 0 n ε k a k h k | | W ( [ 0 , 1 ] ) 2 | | k = 0 n a k h k | | L ( [ 0 , 1 ] ) , n = 0,1,2,..., where W([0,1]) is the weak- L space introduced by Bennett, DeVore and Sharpley. The above estimate is generalized to the sharp weak-type bound | | Y | | W ( Ω ) 2 | | X | | L ( Ω ) , where X and Y stand for -valued martingales such that Y is differentially subordinate to X. An application to harmonic functions on Euclidean domains is presented.

Relative weak derived functors

Panneerselvam Prabakaran (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let R be a ring, n a fixed non-negative integer, 𝒲 the class of all left R -modules with weak injective dimension at most n , and 𝒲 the class of all right R -modules with weak flat dimension at most n . Using left (right) 𝒲 -resolutions and the left derived functors of Hom we study the weak injective dimensions of modules and rings. Also we prove that - - is right balanced on R × R by 𝒲 × 𝒲 , and investigate the global right 𝒲 -dimension of R by right derived functors of .

The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces

S. Gabriyelyan, J. Kąkol, G. Plebanek (2016)

Studia Mathematica

Similarity:

Following Banakh and Gabriyelyan (2016) we say that a Tychonoff space X is an Ascoli space if every compact subset of C k ( X ) is evenly continuous; this notion is closely related to the classical Ascoli theorem. Every k -space, hence any k-space, is Ascoli. Let X be a metrizable space. We prove that the space C k ( X ) is Ascoli iff C k ( X ) is a k -space iff X is locally compact. Moreover, C k ( X ) endowed with the weak topology is Ascoli iff X is countable and discrete. Using some basic concepts from probability...

Weak n -injective and weak n -fat modules

Umamaheswaran Arunachalam, Saravanan Raja, Selvaraj Chelliah, Joseph Kennedy Annadevasahaya Mani (2022)

Czechoslovak Mathematical Journal

Similarity:

We introduce and study the concepts of weak n -injective and weak n -flat modules in terms of super finitely presented modules whose projective dimension is at most n , which generalize the n -FP-injective and n -flat modules. We show that the class of all weak n -injective R -modules is injectively resolving, whereas that of weak n -flat right R -modules is projectively resolving and the class of weak n -injective (or weak n -flat) modules together with its left (or right) orthogonal class forms...

Lower and upper bounds for the provability of Herbrand consistency in weak arithmetics

Zofia Adamowicz, Konrad Zdanowski (2011)

Fundamenta Mathematicae

Similarity:

We prove that for i ≥ 1, the arithmetic I Δ + Ω i does not prove a variant of its own Herbrand consistency restricted to the terms of depth in ( 1 + ε ) l o g i + 2 , where ε is an arbitrarily small constant greater than zero. On the other hand, the provability holds for the set of terms of depths in l o g i + 3 .

The method of rotation and Marcinkiewicz integrals on product domains

Jiecheng Chen, Dashan Fan, Yiming Ying (2002)

Studia Mathematica

Similarity:

We give some rather weak sufficient condition for L p boundedness of the Marcinkiewicz integral operator μ Ω on the product spaces × m (1 < p < ∞), which improves and extends some known results.

Extensions of weak type multipliers

P. Mohanty, S. Madan (2003)

Studia Mathematica

Similarity:

We prove that if Λ M p ( N ) and has compact support then Λ is a weak summability kernel for 1 < p < ∞, where M p ( N ) is the space of multipliers of L p ( N ) .

On weak minima of certain integral functionals

Gioconda Moscariello (1998)

Annales Polonici Mathematici

Similarity:

We prove a regularity result for weak minima of integral functionals of the form Ω F ( x , D u ) d x where F(x,ξ) is a Carathéodory function which grows as | ξ | p with some p > 1.

Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces

Kristóf Szarvas, Ferenc Weisz (2016)

Czechoslovak Mathematical Journal

Similarity:

The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces L p ( d ) (in the case p > 1 ), but (in the case when 1 / p ( · ) is log-Hölder continuous and p - = inf { p ( x ) : x d } > 1 ) on the variable Lebesgue spaces L p ( · ) ( d ) , too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type ( 1 , 1 ) . In the present note we generalize Besicovitch’s covering theorem for the so-called γ -rectangles. We introduce a general maximal operator M s γ , δ and with the help of generalized Φ -functions, the strong-...

Time regularity of generalized Navier-Stokes equation with p ( x , t ) -power law

Cholmin Sin (2023)

Czechoslovak Mathematical Journal

Similarity:

We show time regularity of weak solutions for unsteady motion equations of generalized Newtonian fluids described by p ( x , t ) -power law for p ( x , t ) ( 3 n + 2 ) / ( n + 2 ) , n 2 , by using a higher integrability property and fractional difference method. Moreover, as its application we prove that every weak solution to the problem becomes a local in time strong solution and that it is unique.

Eventually semisimple weak F I -extending modules

Figen Takıl Mutlu, Adnan Tercan, Ramazan Yaşar (2023)

Mathematica Bohemica

Similarity:

In this article, we study modules with the weak F I -extending property. We prove that if M satisfies weak F I -extending, pseudo duo, C 3 properties and M / Soc M has finite uniform dimension then M decomposes into a direct sum of a semisimple submodule and a submodule of finite uniform dimension. In particular, if M satisfies the weak F I -extending, pseudo duo, C 3 properties and ascending (or descending) chain condition on essential submodules then M = M 1 M 2 for some semisimple submodule M 1 and Noetherian (or...

The weak type inequality for the Walsh system

Ushangi Goginava (2008)

Studia Mathematica

Similarity:

The main aim of this paper is to prove that the maximal operator σ is bounded from the Hardy space H 1 / 2 to weak- L 1 / 2 and is not bounded from H 1 / 2 to L 1 / 2 .