Displaying similar documents to “The Brouwer Fixed Point Theorem for Some Set Mappings”

Birational Finite Extensions of Mappings from a Smooth Variety

Marek Karaś (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We present an example of finite mappings of algebraic varieties f:V → W, where V ⊂ kⁿ, W k n + 1 , and F : k k n + 1 such that F | V = f and gdeg F = 1 < gdeg f (gdeg h means the number of points in the generic fiber of h). Thus, in some sense, the result of this note improves our result in J. Pure Appl. Algebra 148 (2000) where it was shown that this phenomenon can occur when V ⊂ kⁿ, W k m with m ≥ n+2. In the case V,W ⊂ kⁿ a similar example does not exist.

P λ -sets and skeletal mappings

Aleksander Błaszczyk, Anna Brzeska (2013)

Colloquium Mathematicae

Similarity:

We prove that if the topology on the set Seq of all finite sequences of natural numbers is determined by P λ -filters and λ ≤ , then Seq is a P λ -set in its Čech-Stone compactification. This improves some results of Simon and of Juhász and Szymański. As a corollary we obtain a generalization of a result of Burke concerning skeletal maps and we partially answer a question of his.

Degrees of compatible L -subsets and compatible mappings

Fu Gui Shi, Yan Sun (2024)

Kybernetika

Similarity:

Based on a completely distributive lattice L , degrees of compatible L -subsets and compatible mappings are introduced in an L -approximation space and their characterizations are given by four kinds of cut sets of L -subsets and L -equivalences, respectively. Besides, some characterizations of compatible mappings and compatible degrees of mappings are given by compatible L -subsets and compatible degrees of L -subsets. Finally, the notion of complete L -sublattices is introduced and it is shown...

F σ -mappings and the invariance of absolute Borel classes

Petr Holický, Jiří Spurný (2004)

Fundamenta Mathematicae

Similarity:

It is proved that F σ -mappings preserve absolute Borel classes, which improves results of R. W. Hansell, J. E. Jayne and C. A. Rogers. The proof is based on the fact that any F σ -mapping f: X → Y of an absolute Suslin metric space X onto an absolute Suslin metric space Y becomes a piecewise perfect mapping when restricted to a suitable F σ -set X X satisfying f ( X ) = Y .

Čech-Stone-like compactifications for general topological spaces

Miroslav Hušek (1992)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The problem whether every topological space X has a compactification Y such that every continuous mapping f from X into a compact space Z has a continuous extension from Y into Z is answered in the negative. For some spaces X such compactifications exist.

On a result by Clunie and Sheil-Small

Dariusz Partyka, Ken-ichi Sakan (2012)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In 1984 J. Clunie and T. Sheil-Small proved ([2, Corollary 5.8]) that for any complex-valued and sense-preserving injective harmonic mapping F in the unit disk 𝔻 , if F ( 𝔻 ) is a convex domain, then the inequality | G ( z 2 ) - G ( z 1 ) | < | H ( z 2 ) - H ( z 1 ) | holds for all distinct points z 1 , z 2 𝔻 . Here H and G are holomorphic mappings in 𝔻 determined by F = H + G ¯ , up to a constant function. We extend this inequality by replacing the unit disk by an arbitrary nonempty domain Ω in and improve it provided F is additionally a quasiconformal mapping...

The (dis)connectedness of products of Hausdorff spaces in the box topology

Vitalij A. Chatyrko (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper the following two propositions are proved: (a) If X α , α A , is an infinite system of connected spaces such that infinitely many of them are nondegenerated completely Hausdorff topological spaces then the box product α A X α can be decomposed into continuum many disjoint nonempty open subsets, in particular, it is disconnected. (b) If X α , α A , is an infinite system of Brown Hausdorff topological spaces then the box product α A X α is also Brown Hausdorff, and hence, it is connected. A space...

On the continuity of the Hausdorff dimension of the Julia-Lavaurs sets

Ludwik Jaksztas (2011)

Fundamenta Mathematicae

Similarity:

Let f₀(z) = z²+1/4. We denote by ₀ the set of parameters σ ∈ ℂ for which the critical point 0 escapes from the filled-in Julia set K(f₀) in one step by the Lavaurs map g σ . We prove that if σ₀ ∈ ∂₀, then the Hausdorff dimension of the Julia-Lavaurs set J 0 , σ is continuous at σ₀ as the function of the parameter σ ¯ if and only if H D ( J 0 , σ ) 4 / 3 . Since H D ( J 0 , σ ) > 4 / 3 on a dense set of parameters which correspond to preparabolic points, the lower semicontinuity implies the continuity of H D ( J 0 , σ ) on an open and dense subset of...

Infinite Iterated Function Systems Depending on a Parameter

Ludwik Jaksztas (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

This paper is motivated by the problem of dependence of the Hausdorff dimension of the Julia-Lavaurs sets J 0 , σ for the map f₀(z) = z²+1/4 on the parameter σ. Using homographies, we imitate the construction of the iterated function system (IFS) whose limit set is a subset of J 0 , σ , given by Urbański and Zinsmeister. The closure of the limit set of our IFS ϕ σ , α n , k is the closure of some family of circles, and if the parameter σ varies, then the behavior of the limit set is similar to the behavior of...

Łojasiewicz Exponent of Overdetermined Mappings

Stanisław Spodzieja, Anna Szlachcińska (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

A mapping F : m is called overdetermined if m > n. We prove that the calculations of both the local and global Łojasiewicz exponent of a real overdetermined polynomial mapping F : m can be reduced to the case m = n.

Free locally convex spaces and L -retracts

Rodrigo Hidalgo Linares, Oleg Okunev (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study the relation of L -equivalence defined between Tychonoff spaces, that is, we study the topological isomorphisms of their respective free locally convex spaces. We introduce the concept of an L -retract in a Tychonoff space in terms of the existence of a special kind of simultaneous extensions of continuous functions, explore the relation of this concept with the Dugundji extension theorem, and find some conditions that allow us to identify L -retracts in various classes of topological...

A set on which the Łojasiewicz exponent at infinity is attained

Jacek Chądzyński, Tadeusz Krasiński (1997)

Annales Polonici Mathematici

Similarity:

We show that for a polynomial mapping F = ( f , . . . , f ) : n m the Łojasiewicz exponent ( F ) of F is attained on the set z n : f ( z ) · . . . · f ( z ) = 0 .

Equidistribution towards the Green current

Vincent Guedj (2003)

Bulletin de la Société Mathématique de France

Similarity:

Let f : k k be a dominating rational mapping of first algebraic degree λ 2 . If S is a positive closed current of bidegree ( 1 , 1 ) on k with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks λ - n ( f n ) * S converge to the Green current T f . For some families of mappings, we get finer convergence results which allow us to characterize all f * -invariant currents.