Displaying similar documents to “Criteria of local in time regularity of the Navier-Stokes equations beyond Serrin's condition”

A direct proof of the Caffarelli-Kohn-Nirenberg theorem

Jörg Wolf (2008)

Banach Center Publications

Similarity:

In the present paper we give a new proof of the Caffarelli-Kohn-Nirenberg theorem based on a direct approach. Given a pair (u,p) of suitable weak solutions to the Navier-Stokes equations in ℝ³ × ]0,∞[ the velocity field u satisfies the following property of partial regularity: The velocity u is Lipschitz continuous in a neighbourhood of a point (x₀,t₀) ∈ Ω × ]0,∞ [ if l i m s u p R 0 1 / R Q R ( x , t ) | c u r l u × u / | u | | ² d x d t ε * for a sufficiently small ε * > 0 .

Long time existence of regular solutions to Navier-Stokes equations in cylindrical domains under boundary slip conditions

W. M. Zajączkowski (2005)

Studia Mathematica

Similarity:

Long time existence of solutions to the Navier-Stokes equations in cylindrical domains under boundary slip conditions is proved. Moreover, the existence of solutions with no restrictions on the magnitude of the initial velocity and the external force is shown. However, we have to assume that the quantity I = i = 1 2 ( | | x i v ( 0 ) | | L ( Ω ) + | | x i f | | L ( Ω × ( 0 , T ) ) ) is sufficiently small, where x₃ is the coordinate along the axis parallel to the cylinder. The time of existence is inversely proportional to I. Existence of solutions is proved by...

Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component

Zujin Zhang (2018)

Czechoslovak Mathematical Journal

Similarity:

We consider the Cauchy problem for the three-dimensional Navier-Stokes equations, and provide an optimal regularity criterion in terms of u 3 and ω 3 , which are the third components of the velocity and vorticity, respectively. This gives an affirmative answer to an open problem in the paper by P. Penel, M. Pokorný (2004).

On the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations in smooth domains. The regularity problem

Hugo Beirão da Veiga (2009)

Journal of the European Mathematical Society

Similarity:

We establish regularity results up to the boundary for solutions to generalized Stokes and Navier–Stokes systems of equations in the stationary and evolutive cases. Generalized here means the presence of a shear dependent viscosity. We treat the case p 2 . Actually, we are interested in proving regularity results in L q ( Ω ) spaces for all the second order derivatives of the velocity and all the first order derivatives of the pressure. The main aim of the present paper is to extend our previous...

Global existence of axially symmetric solutions to Navier-Stokes equations with large angular component of velocity

Wojciech M. Zajączkowski (2004)

Colloquium Mathematicae

Similarity:

Global existence of axially symmetric solutions to the Navier-Stokes equations in a cylinder with the axis of symmetry removed is proved. The solutions satisfy the ideal slip conditions on the boundary. We underline that there is no restriction on the angular component of velocity. We obtain two kinds of existence results. First, under assumptions necessary for the existence of weak solutions, we prove that the velocity belongs to W 4 / 3 2 , 1 ( Ω × ( 0 , T ) ) , so it satisfies the Serrin condition. Next, increasing...

Remarks on regularity criteria for the Navier-Stokes equations with axisymmetric data

Zujin Zhang (2016)

Annales Polonici Mathematici

Similarity:

We consider the axisymmetric Navier-Stokes equations with non-zero swirl component. By invoking the Hardy-Sobolev interpolation inequality, Hardy inequality and the theory of * A β (1 < β < ∞) weights, we establish regularity criteria involving u r , ω z or ω θ in some weighted Lebesgue spaces. This improves many previous results.

Global regular solutions to the Navier-Stokes equations in a cylinder

Wojciech M. Zajączkowski (2006)

Banach Center Publications

Similarity:

The existence and uniqueness of solutions to the Navier-Stokes equations in a cylinder Ω and with boundary slip conditions is proved. Assuming that the azimuthal derivative of cylindrical coordinates and azimuthal coordinate of the initial velocity and the external force are sufficiently small we prove long time existence of regular solutions such that the velocity belongs to W 5 / 2 2 , 1 ( Ω × ( 0 , T ) ) and the gradient of the pressure to L 5 / 2 ( Ω × ( 0 , T ) ) . We prove the existence of solutions without any restrictions on the...

Stability of Constant Solutions to the Navier-Stokes System in ℝ³

Piotr Bogusław Mucha (2001)

Applicationes Mathematicae

Similarity:

The paper examines the initial value problem for the Navier-Stokes system of viscous incompressible fluids in the three-dimensional space. We prove stability of regular solutions which tend to constant flows sufficiently fast. We show that a perturbation of a regular solution is bounded in W r 2 , 1 ( ³ × [ k , k + 1 ] ) for k ∈ ℕ. The result is obtained under the assumption of smallness of the L₂-norm of the perturbing initial data. We do not assume smallness of the W r 2 - 2 / r ( ³ ) -norm of the perturbing initial data or smallness...

Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations

Zujin Zhang, Chenxuan Tong (2022)

Applications of Mathematics

Similarity:

We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that | ω r ( x , t ) | + | ω z ( r , t ) | C r 10 , 0 < r 1 2 . By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing ω r , ω z and ω θ / r on different hollow cylinders, we are able to improve it and obtain | ω r ( x , t ) | + | ω z ( r , t ) | C | ln r | r 17 / 2 , 0 < r 1 2 .

On local-in-time existence for the Dirichlet problem for equations of compressible viscous fluids

Piotr Boguslaw Mucha, Wojciech Zajączkowski (2002)

Annales Polonici Mathematici

Similarity:

The local existence of solutions for the compressible Navier-Stokes equations with the Dirichlet boundary conditions in the L p -framework is proved. Next an almost-global-in-time existence of small solutions is shown. The considerations are made in Lagrangian coordinates. The result is sharp in the L p -approach, because the velocity belongs to W r 2 , 1 with r > 3.

Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces

Yanghai Yu, Fang Liu (2024)

Applications of Mathematics

Similarity:

We construct a new initial data to prove the ill-posedness of both Navier-Stokes and Euler equations in weaker Besov spaces in the sense that the solution maps to these equations starting from u 0 are discontinuous at t = 0 .

Global strong solutions of a 2-D new magnetohydrodynamic system

Ruikuan Liu, Jiayan Yang (2020)

Applications of Mathematics

Similarity:

The main objective of this paper is to study the global strong solution of the parabolic-hyperbolic incompressible magnetohydrodynamic model in the two dimensional space. Based on Agmon, Douglis, and Nirenberg’s estimates for the stationary Stokes equation and Solonnikov’s theorem on L p - L q -estimates for the evolution Stokes equation, it is shown that this coupled magnetohydrodynamic equations possesses a global strong solution. In addition, the uniqueness of the global strong solution...

A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three

Huanyuan Li (2021)

Applications of Mathematics

Similarity:

This paper proves a Serrin’s type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density ρ and velocity field u satisfy ρ L ( 0 , T ; W 1 , q ) + u L s ( 0 , T ; L ω r ) < for some q > 3 and any ( r , s ) satisfying 2 / s + 3 / r 1 , 3 < r , then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over [ 0 , T ] . Here L ω r denotes the weak L r space.

On existence of solutions for the nonstationary Stokes system with boundary slip conditions

Wisam Alame (2005)

Applicationes Mathematicae

Similarity:

Existence of solutions for equations of the nonstationary Stokes system in a bounded domain Ω ⊂ ℝ³ is proved in a class such that velocity belongs to W p 2 , 1 ( Ω × ( 0 , T ) ) , and pressure belongs to W p 1 , 0 ( Ω × ( 0 , T ) ) for p > 3. The proof is divided into three steps. First, the existence of solutions with vanishing initial data is proved in a half-space by applying the Marcinkiewicz multiplier theorem. Next, we prove the existence of weak solutions in a bounded domain and then we regularize them. Finally, the problem with...

Long time existence of solutions to 2d Navier-Stokes equations with heat convection

Jolanta Socała, Wojciech M. Zajączkowski (2009)

Applicationes Mathematicae

Similarity:

Global existence of regular solutions to the Navier-Stokes equations for (v,p) coupled with the heat convection equation for θ is proved in the two-dimensional case in a bounded domain. We assume the slip boundary conditions for velocity and the Neumann condition for temperature. First an appropriate estimate is shown and next the existence is proved by the Leray-Schauder fixed point theorem. We prove the existence of solutions such that v , θ W s 2 , 1 ( Ω T ) , p L s ( Ω T ) , s>2.

A short note on L q theory for Stokes problem with a pressure-dependent viscosity

Václav Mácha (2016)

Czechoslovak Mathematical Journal

Similarity:

We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on p and on the symmetric part of a gradient of u , namely, it is represented by a stress tensor T ( D u , p ) : = ν ( p , | D | 2 ) D which satisfies r -growth condition with r ( 1 , 2 ] . In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for...

On the existence for the Dirichlet problem for the compressible linearized Navier-Stokes system in the L p -framework

Piotr Boguslaw Mucha, Wojciech Zajączkowski (2002)

Annales Polonici Mathematici

Similarity:

The existence of solutions to the Dirichlet problem for the compressible linearized Navier-Stokes system is proved in a class such that the velocity vector belongs to W r 2 , 1 with r > 3. The proof is done in two steps. First the existence for local problems with constant coefficients is proved by applying the Fourier transform. Next by applying the regularizer technique the existence in a bounded domain is shown.

Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows

Jonas Sauer (2016)

Czechoslovak Mathematical Journal

Similarity:

We consider the dynamics of spatially periodic nematic liquid crystal flows in the whole space and prove existence and uniqueness of local-in-time strong solutions using maximal L p -regularity of the periodic Laplace and Stokes operators and a local-in-time existence theorem for quasilinear parabolic equations à la Clément-Li (1993). Maximal regularity of the Laplace and the Stokes operator is obtained using an extrapolation theorem on the locally compact abelian group G : = n - 1 × / L to obtain an -bound...

A uniqueness theorem for viscous flows on exterior domains with summability assumptions on the gradient of pressure.

Giovanni P. Galdi, Paolo Maremonti (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In questa Nota si fornisce un teorema di unicità per soluzioni regolari delle equazioni di Navier-Stokes in domini esterni. Tale teorema non richiede che le velocità tendano ad un prefissato limite all'infinito, mentre il gradiente di pressione è supposto essere di q -ma potenza sommabile nel cilindro spazio-temporale ( q ( 1 , ) ) . Questo risultato non può essere ulteriormente generalizzato al caso q = , a causa di noti controesempi.

The internal stabilization by noise of the linearized Navier-Stokes equation

Viorel Barbu (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

One shows that the linearized Navier-Stokes equation in 𝒪 R d , d 2 , around an unstable equilibrium solution is exponentially stabilizable in probability by an internal noise controller V ( t , ξ ) = i = 1 N V i ( t ) ψ i ( ξ ) β ˙ i ( t ) , ξ 𝒪 , where { β i } i = 1 N are independent Brownian motions in a probability space and { ψ i } i = 1 N is a system of functions on 𝒪 with support in an arbitrary open subset 𝒪 0 𝒪 . The stochastic control input { V i } i = 1 N is found in feedback form. One constructs also a tangential boundary noise controller which exponentially stabilizes in probability...